MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustexhalfOLD Structured version   Unicode version

Theorem metustexhalfOLD 20113
Description: For any element  A of the filter base generated by the metric  D, the half element (corresponding to half the distance) is also in this base. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
metust.1  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
Assertion
Ref Expression
metustexhalfOLD  |-  ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  ->  E. v  e.  F  ( v  o.  v
)  C_  A )
Distinct variable groups:    D, a    X, a    A, a    F, a, v    v, A    v, D    v, F    v, X

Proof of Theorem metustexhalfOLD
Dummy variables  b  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-4r 766 . . . 4  |-  ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  ->  D  e.  ( *Met `  X
) )
2 simplr 754 . . . . . 6  |-  ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  ->  a  e.  RR+ )
32rphalfcld 11031 . . . . 5  |-  ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  ->  ( a  /  2 )  e.  RR+ )
4 eqidd 2439 . . . . 5  |-  ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  ->  ( `' D " ( 0 [,) ( a  /  2
) ) )  =  ( `' D "
( 0 [,) (
a  /  2 ) ) ) )
5 oveq2 6094 . . . . . . . 8  |-  ( b  =  ( a  / 
2 )  ->  (
0 [,) b )  =  ( 0 [,) ( a  /  2
) ) )
65imaeq2d 5164 . . . . . . 7  |-  ( b  =  ( a  / 
2 )  ->  ( `' D " ( 0 [,) b ) )  =  ( `' D " ( 0 [,) (
a  /  2 ) ) ) )
76eqeq2d 2449 . . . . . 6  |-  ( b  =  ( a  / 
2 )  ->  (
( `' D "
( 0 [,) (
a  /  2 ) ) )  =  ( `' D " ( 0 [,) b ) )  <-> 
( `' D "
( 0 [,) (
a  /  2 ) ) )  =  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )
87rspcev 3068 . . . . 5  |-  ( ( ( a  /  2
)  e.  RR+  /\  ( `' D " ( 0 [,) ( a  / 
2 ) ) )  =  ( `' D " ( 0 [,) (
a  /  2 ) ) ) )  ->  E. b  e.  RR+  ( `' D " ( 0 [,) ( a  / 
2 ) ) )  =  ( `' D " ( 0 [,) b
) ) )
93, 4, 8syl2anc 661 . . . 4  |-  ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  ->  E. b  e.  RR+  ( `' D " ( 0 [,) (
a  /  2 ) ) )  =  ( `' D " ( 0 [,) b ) ) )
10 metust.1 . . . . . . 7  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
11 oveq2 6094 . . . . . . . . . 10  |-  ( a  =  b  ->  (
0 [,) a )  =  ( 0 [,) b ) )
1211imaeq2d 5164 . . . . . . . . 9  |-  ( a  =  b  ->  ( `' D " ( 0 [,) a ) )  =  ( `' D " ( 0 [,) b
) ) )
1312cbvmptv 4378 . . . . . . . 8  |-  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  =  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) )
1413rneqi 5061 . . . . . . 7  |-  ran  (
a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  =  ran  (
b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) )
1510, 14eqtri 2458 . . . . . 6  |-  F  =  ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b
) ) )
1615metustelOLD 20101 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
( `' D "
( 0 [,) (
a  /  2 ) ) )  e.  F  <->  E. b  e.  RR+  ( `' D " ( 0 [,) ( a  / 
2 ) ) )  =  ( `' D " ( 0 [,) b
) ) ) )
1716biimpar 485 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  E. b  e.  RR+  ( `' D "
( 0 [,) (
a  /  2 ) ) )  =  ( `' D " ( 0 [,) b ) ) )  ->  ( `' D " ( 0 [,) ( a  /  2
) ) )  e.  F )
181, 9, 17syl2anc 661 . . 3  |-  ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  ->  ( `' D " ( 0 [,) ( a  /  2
) ) )  e.  F )
19 relco 5331 . . . . 5  |-  Rel  (
( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) )
2019a1i 11 . . . 4  |-  ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  ->  Rel  ( ( `' D " ( 0 [,) ( a  / 
2 ) ) )  o.  ( `' D " ( 0 [,) (
a  /  2 ) ) ) ) )
21 cossxp 5355 . . . . . . . . . 10  |-  ( ( `' D " ( 0 [,) ( a  / 
2 ) ) )  o.  ( `' D " ( 0 [,) (
a  /  2 ) ) ) )  C_  ( dom  ( `' D " ( 0 [,) (
a  /  2 ) ) )  X.  ran  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) )
22 cnvimass 5184 . . . . . . . . . . . . . 14  |-  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) 
C_  dom  D
23 xmetf 19879 . . . . . . . . . . . . . . 15  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
24 fdm 5558 . . . . . . . . . . . . . . 15  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
2523, 24syl 16 . . . . . . . . . . . . . 14  |-  ( D  e.  ( *Met `  X )  ->  dom  D  =  ( X  X.  X ) )
2622, 25syl5sseq 3399 . . . . . . . . . . . . 13  |-  ( D  e.  ( *Met `  X )  ->  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) 
C_  ( X  X.  X ) )
27 dmss 5034 . . . . . . . . . . . . . 14  |-  ( ( `' D " ( 0 [,) ( a  / 
2 ) ) ) 
C_  ( X  X.  X )  ->  dom  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) 
C_  dom  ( X  X.  X ) )
28 rnss 5063 . . . . . . . . . . . . . 14  |-  ( ( `' D " ( 0 [,) ( a  / 
2 ) ) ) 
C_  ( X  X.  X )  ->  ran  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) 
C_  ran  ( X  X.  X ) )
29 xpss12 4940 . . . . . . . . . . . . . 14  |-  ( ( dom  ( `' D " ( 0 [,) (
a  /  2 ) ) )  C_  dom  ( X  X.  X
)  /\  ran  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) 
C_  ran  ( X  X.  X ) )  -> 
( dom  ( `' D " ( 0 [,) ( a  /  2
) ) )  X. 
ran  ( `' D " ( 0 [,) (
a  /  2 ) ) ) )  C_  ( dom  ( X  X.  X )  X.  ran  ( X  X.  X
) ) )
3027, 28, 29syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( `' D " ( 0 [,) ( a  / 
2 ) ) ) 
C_  ( X  X.  X )  ->  ( dom  ( `' D "
( 0 [,) (
a  /  2 ) ) )  X.  ran  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) )  C_  ( dom  ( X  X.  X
)  X.  ran  ( X  X.  X ) ) )
3126, 30syl 16 . . . . . . . . . . . 12  |-  ( D  e.  ( *Met `  X )  ->  ( dom  ( `' D "
( 0 [,) (
a  /  2 ) ) )  X.  ran  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) )  C_  ( dom  ( X  X.  X
)  X.  ran  ( X  X.  X ) ) )
3231adantl 466 . . . . . . . . . . 11  |-  ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  -> 
( dom  ( `' D " ( 0 [,) ( a  /  2
) ) )  X. 
ran  ( `' D " ( 0 [,) (
a  /  2 ) ) ) )  C_  ( dom  ( X  X.  X )  X.  ran  ( X  X.  X
) ) )
33 dmxp 5053 . . . . . . . . . . . . 13  |-  ( X  =/=  (/)  ->  dom  ( X  X.  X )  =  X )
34 rnxp 5263 . . . . . . . . . . . . 13  |-  ( X  =/=  (/)  ->  ran  ( X  X.  X )  =  X )
3533, 34xpeq12d 4860 . . . . . . . . . . . 12  |-  ( X  =/=  (/)  ->  ( dom  ( X  X.  X
)  X.  ran  ( X  X.  X ) )  =  ( X  X.  X ) )
3635adantr 465 . . . . . . . . . . 11  |-  ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  -> 
( dom  ( X  X.  X )  X.  ran  ( X  X.  X
) )  =  ( X  X.  X ) )
3732, 36sseqtrd 3387 . . . . . . . . . 10  |-  ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  -> 
( dom  ( `' D " ( 0 [,) ( a  /  2
) ) )  X. 
ran  ( `' D " ( 0 [,) (
a  /  2 ) ) ) )  C_  ( X  X.  X
) )
3821, 37syl5ss 3362 . . . . . . . . 9  |-  ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  -> 
( ( `' D " ( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) )  C_  ( X  X.  X ) )
3938ad3antrrr 729 . . . . . . . 8  |-  ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  ->  ( ( `' D " ( 0 [,) ( a  / 
2 ) ) )  o.  ( `' D " ( 0 [,) (
a  /  2 ) ) ) )  C_  ( X  X.  X
) )
4039sselda 3351 . . . . . . 7  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  ->  <. p ,  q >.  e.  ( X  X.  X ) )
41 opelxp 4864 . . . . . . 7  |-  ( <.
p ,  q >.  e.  ( X  X.  X
)  <->  ( p  e.  X  /\  q  e.  X ) )
4240, 41sylib 196 . . . . . 6  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  ->  (
p  e.  X  /\  q  e.  X )
)
43 simpll 753 . . . . . . 7  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  (
p  e.  X  /\  q  e.  X )
)  ->  ( (
( ( X  =/=  (/)  /\  D  e.  ( *Met `  X
) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a
) ) ) )
44 simprl 755 . . . . . . 7  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  (
p  e.  X  /\  q  e.  X )
)  ->  p  e.  X )
45 simprr 756 . . . . . . 7  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  (
p  e.  X  /\  q  e.  X )
)  ->  q  e.  X )
46 simplr 754 . . . . . . 7  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  (
p  e.  X  /\  q  e.  X )
)  ->  <. p ,  q >.  e.  (
( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )
47 simplll 757 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( (
( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X ) )
4847simp1d 1000 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( (
( ( X  =/=  (/)  /\  D  e.  ( *Met `  X
) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a
) ) ) )
4948, 1syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  D  e.  ( *Met `  X
) )
5048, 2syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  a  e.  RR+ )
5149, 50jca 532 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( D  e.  ( *Met `  X )  /\  a  e.  RR+ ) )
5247simp2d 1001 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  p  e.  X )
5347simp3d 1002 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  q  e.  X )
5451, 52, 533jca 1168 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )
)
55 simplr 754 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  r  e.  X )
56 simprl 755 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  p ( `' D " ( 0 [,) ( a  / 
2 ) ) ) r )
57 simprr 756 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  r ( `' D " ( 0 [,) ( a  / 
2 ) ) ) q )
58 simpll 753 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )
)
5958simp1d 1000 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( D  e.  ( *Met `  X )  /\  a  e.  RR+ ) )
6059simpld 459 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  D  e.  ( *Met `  X
) )
61 ffun 5556 . . . . . . . . . . . . . 14  |-  ( D : ( X  X.  X ) --> RR*  ->  Fun 
D )
6223, 61syl 16 . . . . . . . . . . . . 13  |-  ( D  e.  ( *Met `  X )  ->  Fun  D )
6360, 62syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  Fun  D )
6458simp2d 1001 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  p  e.  X )
6558simp3d 1002 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  q  e.  X )
6664, 65, 41sylanbrc 664 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  <. p ,  q >.  e.  ( X  X.  X ) )
6760, 25syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  dom  D  =  ( X  X.  X
) )
6866, 67eleqtrrd 2515 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  <. p ,  q >.  e.  dom  D )
69 0xr 9422 . . . . . . . . . . . . . 14  |-  0  e.  RR*
7069a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  0  e.  RR* )
7159simprd 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  a  e.  RR+ )
7271rpxrd 11020 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  a  e.  RR* )
7360, 23syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  D :
( X  X.  X
) --> RR* )
7473, 66ffvelrnd 5839 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( D `  <. p ,  q
>. )  e.  RR* )
75 xmetge0 19894 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( *Met `  X )  /\  p  e.  X  /\  q  e.  X
)  ->  0  <_  ( p D q ) )
7660, 64, 65, 75syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  0  <_  ( p D q ) )
77 df-ov 6089 . . . . . . . . . . . . . 14  |-  ( p D q )  =  ( D `  <. p ,  q >. )
7876, 77syl6breq 4326 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  0  <_  ( D `  <. p ,  q >. )
)
7977, 74syl5eqel 2522 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( p D q )  e. 
RR* )
80 0re 9378 . . . . . . . . . . . . . . . . . . . 20  |-  0  e.  RR
8180a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  0  e.  RR )
8271rpred 11019 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  a  e.  RR )
8382rehalfcld 10563 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( a  /  2 )  e.  RR )
8483rexrd 9425 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( a  /  2 )  e. 
RR* )
85 df-ov 6089 . . . . . . . . . . . . . . . . . . . 20  |-  ( p D r )  =  ( D `  <. p ,  r >. )
86 simplr 754 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  r  e.  X )
87 opelxp 4864 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( <.
p ,  r >.  e.  ( X  X.  X
)  <->  ( p  e.  X  /\  r  e.  X ) )
8864, 86, 87sylanbrc 664 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  <. p ,  r >.  e.  ( X  X.  X ) )
8988, 67eleqtrrd 2515 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  <. p ,  r >.  e.  dom  D )
90 simprl 755 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  p ( `' D " ( 0 [,) ( a  / 
2 ) ) ) r )
91 df-br 4288 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p ( `' D "
( 0 [,) (
a  /  2 ) ) ) r  <->  <. p ,  r >.  e.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) )
9290, 91sylib 196 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  <. p ,  r >.  e.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) )
93 fvimacnv 5813 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Fun  D  /\  <. p ,  r >.  e.  dom  D )  ->  ( ( D `  <. p ,  r >. )  e.  ( 0 [,) ( a  /  2 ) )  <->  <. p ,  r >.  e.  ( `' D "
( 0 [,) (
a  /  2 ) ) ) ) )
9493biimpar 485 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( Fun  D  /\  <.
p ,  r >.  e.  dom  D )  /\  <.
p ,  r >.  e.  ( `' D "
( 0 [,) (
a  /  2 ) ) ) )  -> 
( D `  <. p ,  r >. )  e.  ( 0 [,) (
a  /  2 ) ) )
9563, 89, 92, 94syl21anc 1217 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( D `  <. p ,  r
>. )  e.  (
0 [,) ( a  /  2 ) ) )
9685, 95syl5eqel 2522 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( p D r )  e.  ( 0 [,) (
a  /  2 ) ) )
97 elico2 11351 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 0  e.  RR  /\  ( a  /  2
)  e.  RR* )  ->  ( ( p D r )  e.  ( 0 [,) ( a  /  2 ) )  <-> 
( ( p D r )  e.  RR  /\  0  <_  ( p D r )  /\  ( p D r )  <  ( a  /  2 ) ) ) )
9897biimpa 484 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 0  e.  RR  /\  ( a  /  2
)  e.  RR* )  /\  ( p D r )  e.  ( 0 [,) ( a  / 
2 ) ) )  ->  ( ( p D r )  e.  RR  /\  0  <_ 
( p D r )  /\  ( p D r )  < 
( a  /  2
) ) )
9998simp1d 1000 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 0  e.  RR  /\  ( a  /  2
)  e.  RR* )  /\  ( p D r )  e.  ( 0 [,) ( a  / 
2 ) ) )  ->  ( p D r )  e.  RR )
10081, 84, 96, 99syl21anc 1217 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( p D r )  e.  RR )
101 df-ov 6089 . . . . . . . . . . . . . . . . . . . 20  |-  ( r D q )  =  ( D `  <. r ,  q >. )
102 opelxp 4864 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( <.
r ,  q >.  e.  ( X  X.  X
)  <->  ( r  e.  X  /\  q  e.  X ) )
10386, 65, 102sylanbrc 664 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  <. r ,  q >.  e.  ( X  X.  X ) )
104103, 67eleqtrrd 2515 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  <. r ,  q >.  e.  dom  D )
105 simprr 756 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  r ( `' D " ( 0 [,) ( a  / 
2 ) ) ) q )
106 df-br 4288 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( r ( `' D "
( 0 [,) (
a  /  2 ) ) ) q  <->  <. r ,  q >.  e.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) )
107105, 106sylib 196 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  <. r ,  q >.  e.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) )
108 fvimacnv 5813 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Fun  D  /\  <. r ,  q >.  e.  dom  D )  ->  ( ( D `  <. r ,  q >. )  e.  ( 0 [,) ( a  /  2 ) )  <->  <. r ,  q >.  e.  ( `' D "
( 0 [,) (
a  /  2 ) ) ) ) )
109108biimpar 485 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( Fun  D  /\  <.
r ,  q >.  e.  dom  D )  /\  <.
r ,  q >.  e.  ( `' D "
( 0 [,) (
a  /  2 ) ) ) )  -> 
( D `  <. r ,  q >. )  e.  ( 0 [,) (
a  /  2 ) ) )
11063, 104, 107, 109syl21anc 1217 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( D `  <. r ,  q
>. )  e.  (
0 [,) ( a  /  2 ) ) )
111101, 110syl5eqel 2522 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( r D q )  e.  ( 0 [,) (
a  /  2 ) ) )
112 elico2 11351 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 0  e.  RR  /\  ( a  /  2
)  e.  RR* )  ->  ( ( r D q )  e.  ( 0 [,) ( a  /  2 ) )  <-> 
( ( r D q )  e.  RR  /\  0  <_  ( r D q )  /\  ( r D q )  <  ( a  /  2 ) ) ) )
113112biimpa 484 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 0  e.  RR  /\  ( a  /  2
)  e.  RR* )  /\  ( r D q )  e.  ( 0 [,) ( a  / 
2 ) ) )  ->  ( ( r D q )  e.  RR  /\  0  <_ 
( r D q )  /\  ( r D q )  < 
( a  /  2
) ) )
114113simp1d 1000 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 0  e.  RR  /\  ( a  /  2
)  e.  RR* )  /\  ( r D q )  e.  ( 0 [,) ( a  / 
2 ) ) )  ->  ( r D q )  e.  RR )
11581, 84, 111, 114syl21anc 1217 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( r D q )  e.  RR )
116 rexadd 11194 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( p D r )  e.  RR  /\  ( r D q )  e.  RR )  ->  ( ( p D r ) +e ( r D q ) )  =  ( ( p D r )  +  ( r D q ) ) )
117100, 115, 116syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( (
p D r ) +e ( r D q ) )  =  ( ( p D r )  +  ( r D q ) ) )
118100, 115readdcld 9405 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( (
p D r )  +  ( r D q ) )  e.  RR )
119117, 118eqeltrd 2512 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( (
p D r ) +e ( r D q ) )  e.  RR )
120119rexrd 9425 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( (
p D r ) +e ( r D q ) )  e.  RR* )
121 xmettri 19901 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  ( p  e.  X  /\  q  e.  X  /\  r  e.  X ) )  -> 
( p D q )  <_  ( (
p D r ) +e ( r D q ) ) )
12260, 64, 65, 86, 121syl13anc 1220 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( p D q )  <_ 
( ( p D r ) +e
( r D q ) ) )
12398simp3d 1002 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 0  e.  RR  /\  ( a  /  2
)  e.  RR* )  /\  ( p D r )  e.  ( 0 [,) ( a  / 
2 ) ) )  ->  ( p D r )  <  (
a  /  2 ) )
12481, 84, 96, 123syl21anc 1217 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( p D r )  < 
( a  /  2
) )
125113simp3d 1002 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 0  e.  RR  /\  ( a  /  2
)  e.  RR* )  /\  ( r D q )  e.  ( 0 [,) ( a  / 
2 ) ) )  ->  ( r D q )  <  (
a  /  2 ) )
12681, 84, 111, 125syl21anc 1217 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( r D q )  < 
( a  /  2
) )
127100, 115, 82, 124, 126lt2halvesd 10564 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( (
p D r )  +  ( r D q ) )  < 
a )
128117, 127eqbrtrd 4307 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( (
p D r ) +e ( r D q ) )  <  a )
12979, 120, 72, 122, 128xrlelttrd 11126 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( p D q )  < 
a )
13077, 129syl5eqbrr 4321 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( D `  <. p ,  q
>. )  <  a )
131 elico1 11335 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR*  /\  a  e.  RR* )  ->  (
( D `  <. p ,  q >. )  e.  ( 0 [,) a
)  <->  ( ( D `
 <. p ,  q
>. )  e.  RR*  /\  0  <_  ( D `  <. p ,  q >. )  /\  ( D `  <. p ,  q >. )  <  a ) ) )
132131biimpar 485 . . . . . . . . . . . . 13  |-  ( ( ( 0  e.  RR*  /\  a  e.  RR* )  /\  ( ( D `  <. p ,  q >.
)  e.  RR*  /\  0  <_  ( D `  <. p ,  q >. )  /\  ( D `  <. p ,  q >. )  <  a ) )  -> 
( D `  <. p ,  q >. )  e.  ( 0 [,) a
) )
13370, 72, 74, 78, 130, 132syl23anc 1225 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( D `  <. p ,  q
>. )  e.  (
0 [,) a ) )
134 fvimacnv 5813 . . . . . . . . . . . . . 14  |-  ( ( Fun  D  /\  <. p ,  q >.  e.  dom  D )  ->  ( ( D `  <. p ,  q >. )  e.  ( 0 [,) a )  <->  <. p ,  q >.  e.  ( `' D "
( 0 [,) a
) ) ) )
135134biimpa 484 . . . . . . . . . . . . 13  |-  ( ( ( Fun  D  /\  <.
p ,  q >.  e.  dom  D )  /\  ( D `  <. p ,  q >. )  e.  ( 0 [,) a
) )  ->  <. p ,  q >.  e.  ( `' D " ( 0 [,) a ) ) )
136 df-br 4288 . . . . . . . . . . . . 13  |-  ( p ( `' D "
( 0 [,) a
) ) q  <->  <. p ,  q >.  e.  ( `' D " ( 0 [,) a ) ) )
137135, 136sylibr 212 . . . . . . . . . . . 12  |-  ( ( ( Fun  D  /\  <.
p ,  q >.  e.  dom  D )  /\  ( D `  <. p ,  q >. )  e.  ( 0 [,) a
) )  ->  p
( `' D "
( 0 [,) a
) ) q )
13863, 68, 133, 137syl21anc 1217 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  a  e.  RR+ )  /\  p  e.  X  /\  q  e.  X )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  p ( `' D " ( 0 [,) a ) ) q )
13954, 55, 56, 57, 138syl22anc 1219 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  p ( `' D " ( 0 [,) a ) ) q )
14048simprd 463 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  A  =  ( `' D " ( 0 [,) a ) ) )
141140breqd 4298 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  ( p A q  <->  p ( `' D " ( 0 [,) a ) ) q ) )
142139, 141mpbird 232 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  r  e.  X )  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )  ->  p A
q )
143 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  ->  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )
144 df-br 4288 . . . . . . . . . . . . 13  |-  ( p ( ( `' D " ( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) q  <->  <. p ,  q >.  e.  (
( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )
145143, 144sylibr 212 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  ->  p
( ( `' D " ( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) q )
146 vex 2970 . . . . . . . . . . . . 13  |-  p  e. 
_V
147 vex 2970 . . . . . . . . . . . . 13  |-  q  e. 
_V
148146, 147brco 5005 . . . . . . . . . . . 12  |-  ( p ( ( `' D " ( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) q  <->  E. r
( p ( `' D " ( 0 [,) ( a  / 
2 ) ) ) r  /\  r ( `' D " ( 0 [,) ( a  / 
2 ) ) ) q ) )
149145, 148sylib 196 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  ->  E. r
( p ( `' D " ( 0 [,) ( a  / 
2 ) ) ) r  /\  r ( `' D " ( 0 [,) ( a  / 
2 ) ) ) q ) )
15026adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  -> 
( `' D "
( 0 [,) (
a  /  2 ) ) )  C_  ( X  X.  X ) )
151150, 28syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  ->  ran  ( `' D "
( 0 [,) (
a  /  2 ) ) )  C_  ran  ( X  X.  X
) )
15234adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  ->  ran  ( X  X.  X
)  =  X )
153151, 152sseqtrd 3387 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  ->  ran  ( `' D "
( 0 [,) (
a  /  2 ) ) )  C_  X
)
154153adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r )  ->  ran  ( `' D " ( 0 [,) ( a  /  2
) ) )  C_  X )
155 vex 2970 . . . . . . . . . . . . . . . . . . . . 21  |-  r  e. 
_V
156146, 155brelrn 5065 . . . . . . . . . . . . . . . . . . . 20  |-  ( p ( `' D "
( 0 [,) (
a  /  2 ) ) ) r  -> 
r  e.  ran  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) )
157156adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r )  ->  r  e.  ran  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) )
158154, 157sseldd 3352 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r )  ->  r  e.  X
)
159158adantrr 716 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  ( p ( `' D " ( 0 [,) ( a  / 
2 ) ) ) r  /\  r ( `' D " ( 0 [,) ( a  / 
2 ) ) ) q ) )  -> 
r  e.  X )
160159ex 434 . . . . . . . . . . . . . . . 16  |-  ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  -> 
( ( p ( `' D " ( 0 [,) ( a  / 
2 ) ) ) r  /\  r ( `' D " ( 0 [,) ( a  / 
2 ) ) ) q )  ->  r  e.  X ) )
161160ancrd 554 . . . . . . . . . . . . . . 15  |-  ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  -> 
( ( p ( `' D " ( 0 [,) ( a  / 
2 ) ) ) r  /\  r ( `' D " ( 0 [,) ( a  / 
2 ) ) ) q )  ->  (
r  e.  X  /\  ( p ( `' D " ( 0 [,) ( a  / 
2 ) ) ) r  /\  r ( `' D " ( 0 [,) ( a  / 
2 ) ) ) q ) ) ) )
162161eximdv 1676 . . . . . . . . . . . . . 14  |-  ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  -> 
( E. r ( p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q )  ->  E. r ( r  e.  X  /\  (
p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) ) ) )
163162ad3antrrr 729 . . . . . . . . . . . . 13  |-  ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  ->  ( E. r ( p ( `' D " ( 0 [,) ( a  / 
2 ) ) ) r  /\  r ( `' D " ( 0 [,) ( a  / 
2 ) ) ) q )  ->  E. r
( r  e.  X  /\  ( p ( `' D " ( 0 [,) ( a  / 
2 ) ) ) r  /\  r ( `' D " ( 0 [,) ( a  / 
2 ) ) ) q ) ) ) )
1641633ad2ant1 1009 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  ->  ( E. r ( p ( `' D " ( 0 [,) ( a  / 
2 ) ) ) r  /\  r ( `' D " ( 0 [,) ( a  / 
2 ) ) ) q )  ->  E. r
( r  e.  X  /\  ( p ( `' D " ( 0 [,) ( a  / 
2 ) ) ) r  /\  r ( `' D " ( 0 [,) ( a  / 
2 ) ) ) q ) ) ) )
165164adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  ->  ( E. r ( p ( `' D " ( 0 [,) ( a  / 
2 ) ) ) r  /\  r ( `' D " ( 0 [,) ( a  / 
2 ) ) ) q )  ->  E. r
( r  e.  X  /\  ( p ( `' D " ( 0 [,) ( a  / 
2 ) ) ) r  /\  r ( `' D " ( 0 [,) ( a  / 
2 ) ) ) q ) ) ) )
166149, 165mpd 15 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  ->  E. r
( r  e.  X  /\  ( p ( `' D " ( 0 [,) ( a  / 
2 ) ) ) r  /\  r ( `' D " ( 0 [,) ( a  / 
2 ) ) ) q ) ) )
167 df-rex 2716 . . . . . . . . . 10  |-  ( E. r  e.  X  ( p ( `' D " ( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q )  <->  E. r ( r  e.  X  /\  ( p ( `' D "
( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) ) )
168166, 167sylibr 212 . . . . . . . . 9  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  ->  E. r  e.  X  ( p
( `' D "
( 0 [,) (
a  /  2 ) ) ) r  /\  r ( `' D " ( 0 [,) (
a  /  2 ) ) ) q ) )
169142, 168r19.29a 2857 . . . . . . . 8  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  ->  p A q )
170 df-br 4288 . . . . . . . 8  |-  ( p A q  <->  <. p ,  q >.  e.  A
)
171169, 170sylib 196 . . . . . . 7  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  p  e.  X  /\  q  e.  X )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  ->  <. p ,  q >.  e.  A
)
17243, 44, 45, 46, 171syl31anc 1221 . . . . . 6  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  /\  (
p  e.  X  /\  q  e.  X )
)  ->  <. p ,  q >.  e.  A
)
17342, 172mpdan 668 . . . . 5  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  /\  <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) ) )  ->  <. p ,  q >.  e.  A
)
174173ex 434 . . . 4  |-  ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  ->  ( <. p ,  q >.  e.  ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) )  ->  <. p ,  q >.  e.  A
) )
17520, 174relssdv 4927 . . 3  |-  ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  ->  ( ( `' D " ( 0 [,) ( a  / 
2 ) ) )  o.  ( `' D " ( 0 [,) (
a  /  2 ) ) ) )  C_  A )
176 id 22 . . . . . 6  |-  ( v  =  ( `' D " ( 0 [,) (
a  /  2 ) ) )  ->  v  =  ( `' D " ( 0 [,) (
a  /  2 ) ) ) )
177176, 176coeq12d 4999 . . . . 5  |-  ( v  =  ( `' D " ( 0 [,) (
a  /  2 ) ) )  ->  (
v  o.  v )  =  ( ( `' D " ( 0 [,) ( a  / 
2 ) ) )  o.  ( `' D " ( 0 [,) (
a  /  2 ) ) ) ) )
178177sseq1d 3378 . . . 4  |-  ( v  =  ( `' D " ( 0 [,) (
a  /  2 ) ) )  ->  (
( v  o.  v
)  C_  A  <->  ( ( `' D " ( 0 [,) ( a  / 
2 ) ) )  o.  ( `' D " ( 0 [,) (
a  /  2 ) ) ) )  C_  A ) )
179178rspcev 3068 . . 3  |-  ( ( ( `' D "
( 0 [,) (
a  /  2 ) ) )  e.  F  /\  ( ( `' D " ( 0 [,) (
a  /  2 ) ) )  o.  ( `' D " ( 0 [,) ( a  / 
2 ) ) ) )  C_  A )  ->  E. v  e.  F  ( v  o.  v
)  C_  A )
18018, 175, 179syl2anc 661 . 2  |-  ( ( ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  /\  a  e.  RR+ )  /\  A  =  ( `' D " ( 0 [,) a ) ) )  ->  E. v  e.  F  ( v  o.  v )  C_  A
)
18110metustelOLD 20101 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  ( A  e.  F  <->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) ) )
182181adantl 466 . . 3  |-  ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  -> 
( A  e.  F  <->  E. a  e.  RR+  A  =  ( `' D "
( 0 [,) a
) ) ) )
183182biimpa 484 . 2  |-  ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  ->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a
) ) )
184180, 183r19.29a 2857 1  |-  ( ( ( X  =/=  (/)  /\  D  e.  ( *Met `  X ) )  /\  A  e.  F )  ->  E. v  e.  F  ( v  o.  v
)  C_  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2601   E.wrex 2711    C_ wss 3323   (/)c0 3632   <.cop 3878   class class class wbr 4287    e. cmpt 4345    X. cxp 4833   `'ccnv 4834   dom cdm 4835   ran crn 4836   "cima 4838    o. ccom 4839   Rel wrel 4840   Fun wfun 5407   -->wf 5409   ` cfv 5413  (class class class)co 6086   RRcr 9273   0cc0 9274    + caddc 9277   RR*cxr 9409    < clt 9410    <_ cle 9411    / cdiv 9985   2c2 10363   RR+crp 10983   +ecxad 11079   [,)cico 11294   *Metcxmt 17776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-po 4636  df-so 4637  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-1st 6572  df-2nd 6573  df-er 7093  df-map 7208  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-2 10372  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ico 11298  df-xmet 17785
This theorem is referenced by:  metustOLD  20117
  Copyright terms: Public domain W3C validator