MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mettri2 Structured version   Unicode version

Theorem mettri2 20607
Description: Triangle inequality for the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
mettri2  |-  ( ( D  e.  ( Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  <_  (
( C D A )  +  ( C D B ) ) )

Proof of Theorem mettri2
StepHypRef Expression
1 metxmet 20600 . . 3  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
2 xmettri2 20606 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) )
31, 2sylan 471 . 2  |-  ( ( D  e.  ( Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) )
4 metcl 20598 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  C  e.  X  /\  A  e.  X )  ->  ( C D A )  e.  RR )
543adant3r3 1207 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( C D A )  e.  RR )
6 metcl 20598 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  C  e.  X  /\  B  e.  X )  ->  ( C D B )  e.  RR )
763adant3r2 1206 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( C D B )  e.  RR )
8 rexadd 11431 . . 3  |-  ( ( ( C D A )  e.  RR  /\  ( C D B )  e.  RR )  -> 
( ( C D A ) +e
( C D B ) )  =  ( ( C D A )  +  ( C D B ) ) )
95, 7, 8syl2anc 661 . 2  |-  ( ( D  e.  ( Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( ( C D A ) +e ( C D B ) )  =  ( ( C D A )  +  ( C D B ) ) )
103, 9breqtrd 4471 1  |-  ( ( D  e.  ( Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  <_  (
( C D A )  +  ( C D B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4447   ` cfv 5588  (class class class)co 6284   RRcr 9491    + caddc 9495    <_ cle 9629   +ecxad 11316   *Metcxmt 18202   Metcme 18203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-mulcl 9554  ax-i2m1 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-xadd 11319  df-xmet 18211  df-met 18212
This theorem is referenced by:  mettri  20618  mstri2  20733  metf1o  29879  isbnd3  29911  heibor1lem  29936  bfplem2  29950
  Copyright terms: Public domain W3C validator