MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mettri2 Structured version   Unicode version

Theorem mettri2 21287
Description: Triangle inequality for the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
mettri2  |-  ( ( D  e.  ( Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  <_  (
( C D A )  +  ( C D B ) ) )

Proof of Theorem mettri2
StepHypRef Expression
1 metxmet 21280 . . 3  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
2 xmettri2 21286 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) )
31, 2sylan 473 . 2  |-  ( ( D  e.  ( Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) )
4 metcl 21278 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  C  e.  X  /\  A  e.  X )  ->  ( C D A )  e.  RR )
543adant3r3 1216 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( C D A )  e.  RR )
6 metcl 21278 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  C  e.  X  /\  B  e.  X )  ->  ( C D B )  e.  RR )
763adant3r2 1215 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( C D B )  e.  RR )
8 rexadd 11525 . . 3  |-  ( ( ( C D A )  e.  RR  /\  ( C D B )  e.  RR )  -> 
( ( C D A ) +e
( C D B ) )  =  ( ( C D A )  +  ( C D B ) ) )
95, 7, 8syl2anc 665 . 2  |-  ( ( D  e.  ( Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( ( C D A ) +e ( C D B ) )  =  ( ( C D A )  +  ( C D B ) ) )
103, 9breqtrd 4450 1  |-  ( ( D  e.  ( Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  <_  (
( C D A )  +  ( C D B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   RRcr 9537    + caddc 9541    <_ cle 9675   +ecxad 11407   *Metcxmt 18890   Metcme 18891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-mulcl 9600  ax-i2m1 9606
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-xadd 11410  df-xmet 18898  df-met 18899
This theorem is referenced by:  mettri  21298  mstri2  21413  metf1o  31788  isbnd3  31820  heibor1lem  31845  bfplem2  31859
  Copyright terms: Public domain W3C validator