MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metsym Structured version   Unicode version

Theorem metsym 20938
Description: The distance function of a metric space is symmetric. Definition 14-1.1(c) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
metsym  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( B D A ) )

Proof of Theorem metsym
StepHypRef Expression
1 metxmet 20922 . 2  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
2 xmetsym 20935 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  =  ( B D A ) )
31, 2syl3an1 1259 1  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( B D A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 971    = wceq 1399    e. wcel 1826   ` cfv 5496  (class class class)co 6196   *Metcxmt 18516   Metcme 18517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-po 4714  df-so 4715  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-er 7229  df-map 7340  df-en 7436  df-dom 7437  df-sdom 7438  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-xadd 11240  df-xmet 18525  df-met 18526
This theorem is referenced by:  mettri  20940  mettri3  20942  minvecolem2  25908  caushft  30420  heiborlem6  30478  rrncmslem  30494
  Copyright terms: Public domain W3C validator