MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metss Structured version   Unicode version

Theorem metss 21177
Description: Two ways of saying that metric  D generates a finer topology than metric  C. (Contributed by Mario Carneiro, 12-Nov-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3  |-  J  =  ( MetOpen `  C )
metequiv.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metss  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( J  C_  K  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
Distinct variable groups:    s, r, x, C    J, r, s, x    K, r, s, x    D, r, s, x    X, r, s, x

Proof of Theorem metss
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metequiv.3 . . . . 5  |-  J  =  ( MetOpen `  C )
21mopnval 21107 . . . 4  |-  ( C  e.  ( *Met `  X )  ->  J  =  ( topGen `  ran  ( ball `  C )
) )
32adantr 463 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  J  =  ( topGen `  ran  ( ball `  C )
) )
4 metequiv.4 . . . . 5  |-  K  =  ( MetOpen `  D )
54mopnval 21107 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  K  =  ( topGen `  ran  ( ball `  D )
) )
65adantl 464 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  K  =  ( topGen `  ran  ( ball `  D )
) )
73, 6sseq12d 3518 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( J  C_  K  <->  ( topGen ` 
ran  ( ball `  C
) )  C_  ( topGen `
 ran  ( ball `  D ) ) ) )
8 blbas 21099 . . . 4  |-  ( C  e.  ( *Met `  X )  ->  ran  ( ball `  C )  e. 
TopBases )
98adantr 463 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ran  ( ball `  C )  e. 
TopBases )
10 unirnbl 21089 . . . . 5  |-  ( C  e.  ( *Met `  X )  ->  U. ran  ( ball `  C )  =  X )
1110adantr 463 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  U. ran  ( ball `  C )  =  X )
12 unirnbl 21089 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  U. ran  ( ball `  D )  =  X )
1312adantl 464 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  U. ran  ( ball `  D )  =  X )
1411, 13eqtr4d 2498 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  U. ran  ( ball `  C )  =  U. ran  ( ball `  D ) )
15 tgss2 19656 . . 3  |-  ( ( ran  ( ball `  C
)  e.  TopBases  /\  U. ran  ( ball `  C
)  =  U. ran  ( ball `  D )
)  ->  ( ( topGen `
 ran  ( ball `  C ) )  C_  ( topGen `  ran  ( ball `  D ) )  <->  A. x  e.  U. ran  ( ball `  C ) A. y  e.  ran  ( ball `  C
) ( x  e.  y  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  y ) ) ) )
169, 14, 15syl2anc 659 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  (
( topGen `  ran  ( ball `  C ) )  C_  ( topGen `  ran  ( ball `  D ) )  <->  A. x  e.  U. ran  ( ball `  C ) A. y  e.  ran  ( ball `  C
) ( x  e.  y  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  y ) ) ) )
1711raleqdv 3057 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  U. ran  ( ball `  C ) A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  A. x  e.  X  A. y  e.  ran  ( ball `  C
) ( x  e.  y  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  y ) ) ) )
18 blssex 21096 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( E. z  e.  ran  ( ball `  D ) ( x  e.  z  /\  z  C_  y )  <->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
) )
1918adantll 711 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
)  <->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y ) )
2019imbi2d 314 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  (
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
) ) )
2120ralbidv 2893 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  A. y  e.  ran  ( ball `  C
) ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
) ) )
22 rpxr 11228 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  r  e. 
RR* )
23 blelrn 21086 . . . . . . . . . . 11  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR* )  ->  ( x ( ball `  C ) r )  e.  ran  ( ball `  C ) )
2422, 23syl3an3 1261 . . . . . . . . . 10  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR+ )  ->  ( x ( ball `  C ) r )  e.  ran  ( ball `  C ) )
25 blcntr 21082 . . . . . . . . . 10  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR+ )  ->  x  e.  ( x ( ball `  C
) r ) )
26 eleq2 2527 . . . . . . . . . . . . 13  |-  ( y  =  ( x (
ball `  C )
r )  ->  (
x  e.  y  <->  x  e.  ( x ( ball `  C ) r ) ) )
27 sseq2 3511 . . . . . . . . . . . . . 14  |-  ( y  =  ( x (
ball `  C )
r )  ->  (
( x ( ball `  D ) s ) 
C_  y  <->  ( x
( ball `  D )
s )  C_  (
x ( ball `  C
) r ) ) )
2827rexbidv 2965 . . . . . . . . . . . . 13  |-  ( y  =  ( x (
ball `  C )
r )  ->  ( E. s  e.  RR+  (
x ( ball `  D
) s )  C_  y 
<->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
2926, 28imbi12d 318 . . . . . . . . . . . 12  |-  ( y  =  ( x (
ball `  C )
r )  ->  (
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y )  <->  ( x  e.  ( x ( ball `  C ) r )  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) ) )
3029rspcv 3203 . . . . . . . . . . 11  |-  ( ( x ( ball `  C
) r )  e. 
ran  ( ball `  C
)  ->  ( A. y  e.  ran  ( ball `  C ) ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)  ->  ( x  e.  ( x ( ball `  C ) r )  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) ) )
3130com23 78 . . . . . . . . . 10  |-  ( ( x ( ball `  C
) r )  e. 
ran  ( ball `  C
)  ->  ( x  e.  ( x ( ball `  C ) r )  ->  ( A. y  e.  ran  ( ball `  C
) ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r ) ) ) )
3224, 25, 31sylc 60 . . . . . . . . 9  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR+ )  ->  ( A. y  e. 
ran  ( ball `  C
) ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r ) ) )
33323expa 1194 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  x  e.  X )  /\  r  e.  RR+ )  ->  ( A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y )  ->  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r ) ) )
3433adantllr 716 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  r  e.  RR+ )  ->  ( A. y  e. 
ran  ( ball `  C
) ( x  e.  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r ) ) )
3534ralrimdva 2872 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y )  ->  A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r ) ) )
36 blss 21094 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  ran  ( ball `  C )  /\  x  e.  y
)  ->  E. r  e.  RR+  ( x (
ball `  C )
r )  C_  y
)
37363expb 1195 . . . . . . . . . . . 12  |-  ( ( C  e.  ( *Met `  X )  /\  ( y  e. 
ran  ( ball `  C
)  /\  x  e.  y ) )  ->  E. r  e.  RR+  (
x ( ball `  C
) r )  C_  y )
3837adantlr 712 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  (
y  e.  ran  ( ball `  C )  /\  x  e.  y )
)  ->  E. r  e.  RR+  ( x (
ball `  C )
r )  C_  y
)
3938adantlr 712 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( y  e.  ran  ( ball `  C )  /\  x  e.  y
) )  ->  E. r  e.  RR+  ( x (
ball `  C )
r )  C_  y
)
40 r19.29 2989 . . . . . . . . . . . 12  |-  ( ( A. r  e.  RR+  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  E. r  e.  RR+  ( x ( ball `  C ) r ) 
C_  y )  ->  E. r  e.  RR+  ( E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  ( x (
ball `  C )
r )  C_  y
) )
41 sstr 3497 . . . . . . . . . . . . . . . 16  |-  ( ( ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  (
x ( ball `  C
) r )  C_  y )  ->  (
x ( ball `  D
) s )  C_  y )
4241expcom 433 . . . . . . . . . . . . . . 15  |-  ( ( x ( ball `  C
) r )  C_  y  ->  ( ( x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  ->  ( x (
ball `  D )
s )  C_  y
) )
4342reximdv 2928 . . . . . . . . . . . . . 14  |-  ( ( x ( ball `  C
) r )  C_  y  ->  ( E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  ->  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  y ) )
4443impcom 428 . . . . . . . . . . . . 13  |-  ( ( E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  (
x ( ball `  C
) r )  C_  y )  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)
4544rexlimivw 2943 . . . . . . . . . . . 12  |-  ( E. r  e.  RR+  ( E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  ( x (
ball `  C )
r )  C_  y
)  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
)
4640, 45syl 16 . . . . . . . . . . 11  |-  ( ( A. r  e.  RR+  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  E. r  e.  RR+  ( x ( ball `  C ) r ) 
C_  y )  ->  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  y )
4746ex 432 . . . . . . . . . 10  |-  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  -> 
( E. r  e.  RR+  ( x ( ball `  C ) r ) 
C_  y  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  y
) )
4839, 47syl5com 30 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( y  e.  ran  ( ball `  C )  /\  x  e.  y
) )  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  ->  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  y ) )
4948expr 613 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  y  e.  ran  ( ball `  C )
)  ->  ( x  e.  y  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  ->  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  y ) ) )
5049com23 78 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  y  e.  ran  ( ball `  C )
)  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  -> 
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y ) ) )
5150ralrimdva 2872 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  ->  A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y ) ) )
5235, 51impbid 191 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  y )  <->  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
5321, 52bitrd 253 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
5453ralbidva 2890 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  X  A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
5517, 54bitrd 253 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  U. ran  ( ball `  C ) A. y  e.  ran  ( ball `  C )
( x  e.  y  ->  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  y
) )  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
567, 16, 553bitrd 279 1  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( J  C_  K  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805    C_ wss 3461   U.cuni 4235   ran crn 4989   ` cfv 5570  (class class class)co 6270   RR*cxr 9616   RR+crp 11221   topGenctg 14927   *Metcxmt 18598   ballcbl 18600   MetOpencmopn 18603   TopBasesctb 19565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-n0 10792  df-z 10861  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-topgen 14933  df-psmet 18606  df-xmet 18607  df-bl 18609  df-mopn 18610  df-bases 19568
This theorem is referenced by:  metequiv  21178  metss2  21181
  Copyright terms: Public domain W3C validator