MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metrest Structured version   Unicode version

Theorem metrest 20102
Description: Two alternate formulations of a subspace topology of a metric space topology. (Contributed by Jeff Hankins, 19-Aug-2009.) (Proof shortened by Mario Carneiro, 5-Jan-2014.)
Hypotheses
Ref Expression
metrest.1  |-  D  =  ( C  |`  ( Y  X.  Y ) )
metrest.3  |-  J  =  ( MetOpen `  C )
metrest.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metrest  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( Jt  Y
)  =  K )

Proof of Theorem metrest
Dummy variables  u  r  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3573 . . . . . . . . . 10  |-  ( u  i^i  Y )  C_  u
2 metrest.3 . . . . . . . . . . . . 13  |-  J  =  ( MetOpen `  C )
32elmopn2 20023 . . . . . . . . . . . 12  |-  ( C  e.  ( *Met `  X )  ->  (
u  e.  J  <->  ( u  C_  X  /\  A. y  e.  u  E. r  e.  RR+  ( y (
ball `  C )
r )  C_  u
) ) )
43simplbda 624 . . . . . . . . . . 11  |-  ( ( C  e.  ( *Met `  X )  /\  u  e.  J
)  ->  A. y  e.  u  E. r  e.  RR+  ( y (
ball `  C )
r )  C_  u
)
54adantlr 714 . . . . . . . . . 10  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  u  e.  J )  ->  A. y  e.  u  E. r  e.  RR+  ( y (
ball `  C )
r )  C_  u
)
6 ssralv 3419 . . . . . . . . . 10  |-  ( ( u  i^i  Y ) 
C_  u  ->  ( A. y  e.  u  E. r  e.  RR+  (
y ( ball `  C
) r )  C_  u  ->  A. y  e.  ( u  i^i  Y ) E. r  e.  RR+  ( y ( ball `  C ) r ) 
C_  u ) )
71, 5, 6mpsyl 63 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  u  e.  J )  ->  A. y  e.  ( u  i^i  Y
) E. r  e.  RR+  ( y ( ball `  C ) r ) 
C_  u )
8 ssrin 3578 . . . . . . . . . . 11  |-  ( ( y ( ball `  C
) r )  C_  u  ->  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  (
u  i^i  Y )
)
98reximi 2826 . . . . . . . . . 10  |-  ( E. r  e.  RR+  (
y ( ball `  C
) r )  C_  u  ->  E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  ( u  i^i  Y ) )
109ralimi 2794 . . . . . . . . 9  |-  ( A. y  e.  ( u  i^i  Y ) E. r  e.  RR+  ( y (
ball `  C )
r )  C_  u  ->  A. y  e.  ( u  i^i  Y ) E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  ( u  i^i  Y ) )
117, 10syl 16 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  u  e.  J )  ->  A. y  e.  ( u  i^i  Y
) E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  ( u  i^i  Y ) )
12 inss2 3574 . . . . . . . 8  |-  ( u  i^i  Y )  C_  Y
1311, 12jctil 537 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  u  e.  J )  ->  (
( u  i^i  Y
)  C_  Y  /\  A. y  e.  ( u  i^i  Y ) E. r  e.  RR+  (
( y ( ball `  C ) r )  i^i  Y )  C_  ( u  i^i  Y ) ) )
14 sseq1 3380 . . . . . . . 8  |-  ( x  =  ( u  i^i 
Y )  ->  (
x  C_  Y  <->  ( u  i^i  Y )  C_  Y
) )
15 sseq2 3381 . . . . . . . . . 10  |-  ( x  =  ( u  i^i 
Y )  ->  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  <->  ( (
y ( ball `  C
) r )  i^i 
Y )  C_  (
u  i^i  Y )
) )
1615rexbidv 2739 . . . . . . . . 9  |-  ( x  =  ( u  i^i 
Y )  ->  ( E. r  e.  RR+  (
( y ( ball `  C ) r )  i^i  Y )  C_  x 
<->  E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  ( u  i^i  Y ) ) )
1716raleqbi1dv 2928 . . . . . . . 8  |-  ( x  =  ( u  i^i 
Y )  ->  ( A. y  e.  x  E. r  e.  RR+  (
( y ( ball `  C ) r )  i^i  Y )  C_  x 
<-> 
A. y  e.  ( u  i^i  Y ) E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  ( u  i^i  Y ) ) )
1814, 17anbi12d 710 . . . . . . 7  |-  ( x  =  ( u  i^i 
Y )  ->  (
( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  (
( y ( ball `  C ) r )  i^i  Y )  C_  x )  <->  ( (
u  i^i  Y )  C_  Y  /\  A. y  e.  ( u  i^i  Y
) E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  ( u  i^i  Y ) ) ) )
1913, 18syl5ibrcom 222 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  u  e.  J )  ->  (
x  =  ( u  i^i  Y )  -> 
( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  (
( y ( ball `  C ) r )  i^i  Y )  C_  x ) ) )
2019rexlimdva 2844 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( E. u  e.  J  x  =  ( u  i^i 
Y )  ->  (
x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) ) )
212mopntop 20018 . . . . . . . . 9  |-  ( C  e.  ( *Met `  X )  ->  J  e.  Top )
2221ad2antrr 725 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  J  e.  Top )
23 ssel2 3354 . . . . . . . . . . . . . 14  |-  ( ( x  C_  Y  /\  y  e.  x )  ->  y  e.  Y )
24 ssel2 3354 . . . . . . . . . . . . . . . 16  |-  ( ( Y  C_  X  /\  y  e.  Y )  ->  y  e.  X )
25 rpxr 11001 . . . . . . . . . . . . . . . . . 18  |-  ( r  e.  RR+  ->  r  e. 
RR* )
262blopn 20078 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( y ( ball `  C ) r )  e.  J )
27 eleq1a 2512 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y ( ball `  C
) r )  e.  J  ->  ( z  =  ( y (
ball `  C )
r )  ->  z  e.  J ) )
2826, 27syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( z  =  ( y ( ball `  C
) r )  -> 
z  e.  J ) )
29283expa 1187 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( C  e.  ( *Met `  X
)  /\  y  e.  X )  /\  r  e.  RR* )  ->  (
z  =  ( y ( ball `  C
) r )  -> 
z  e.  J ) )
3025, 29sylan2 474 . . . . . . . . . . . . . . . . 17  |-  ( ( ( C  e.  ( *Met `  X
)  /\  y  e.  X )  /\  r  e.  RR+ )  ->  (
z  =  ( y ( ball `  C
) r )  -> 
z  e.  J ) )
3130rexlimdva 2844 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  X
)  ->  ( E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  ->  z  e.  J
) )
3224, 31sylan2 474 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  ( *Met `  X )  /\  ( Y  C_  X  /\  y  e.  Y
) )  ->  ( E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  ->  z  e.  J ) )
3332anassrs 648 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  y  e.  Y )  ->  ( E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  ->  z  e.  J ) )
3423, 33sylan2 474 . . . . . . . . . . . . 13  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  y  e.  x ) )  -> 
( E. r  e.  RR+  z  =  (
y ( ball `  C
) r )  -> 
z  e.  J ) )
3534anassrs 648 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  Y  C_  X )  /\  x  C_  Y )  /\  y  e.  x )  ->  ( E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  ->  z  e.  J ) )
3635rexlimdva 2844 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  x  C_  Y
)  ->  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  ->  z  e.  J
) )
3736adantrd 468 . . . . . . . . . 10  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  x  C_  Y
)  ->  ( ( E. y  e.  x  E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  /\  (
z  i^i  Y )  C_  x )  ->  z  e.  J ) )
3837adantrr 716 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
( E. y  e.  x  E. r  e.  RR+  z  =  (
y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x )  ->  z  e.  J ) )
3938abssdv 3429 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) }  C_  J )
40 uniopn 18513 . . . . . . . 8  |-  ( ( J  e.  Top  /\  { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  /\  ( z  i^i 
Y )  C_  x
) }  C_  J
)  ->  U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) }  e.  J )
4122, 39, 40syl2anc 661 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  U. {
z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  /\  ( z  i^i 
Y )  C_  x
) }  e.  J
)
42 oveq1 6101 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  u  ->  (
y ( ball `  C
) r )  =  ( u ( ball `  C ) r ) )
4342ineq1d 3554 . . . . . . . . . . . . . . . . 17  |-  ( y  =  u  ->  (
( y ( ball `  C ) r )  i^i  Y )  =  ( ( u (
ball `  C )
r )  i^i  Y
) )
4443sseq1d 3386 . . . . . . . . . . . . . . . 16  |-  ( y  =  u  ->  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  <->  ( (
u ( ball `  C
) r )  i^i 
Y )  C_  x
) )
4544rexbidv 2739 . . . . . . . . . . . . . . 15  |-  ( y  =  u  ->  ( E. r  e.  RR+  (
( y ( ball `  C ) r )  i^i  Y )  C_  x 
<->  E. r  e.  RR+  ( ( u (
ball `  C )
r )  i^i  Y
)  C_  x )
)
4645rspccv 3073 . . . . . . . . . . . . . 14  |-  ( A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x  ->  ( u  e.  x  ->  E. r  e.  RR+  ( ( u (
ball `  C )
r )  i^i  Y
)  C_  x )
)
4746ad2antll 728 . . . . . . . . . . . . 13  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
u  e.  x  ->  E. r  e.  RR+  (
( u ( ball `  C ) r )  i^i  Y )  C_  x ) )
48 ssel 3353 . . . . . . . . . . . . . . 15  |-  ( x 
C_  Y  ->  (
u  e.  x  ->  u  e.  Y )
)
49 ssel 3353 . . . . . . . . . . . . . . . 16  |-  ( Y 
C_  X  ->  (
u  e.  Y  ->  u  e.  X )
)
50 blcntr 19991 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( C  e.  ( *Met `  X )  /\  u  e.  X  /\  r  e.  RR+ )  ->  u  e.  ( u ( ball `  C
) r ) )
5150a1d 25 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( C  e.  ( *Met `  X )  /\  u  e.  X  /\  r  e.  RR+ )  ->  ( ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  ->  u  e.  ( u ( ball `  C
) r ) ) )
5251ancld 553 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  e.  ( *Met `  X )  /\  u  e.  X  /\  r  e.  RR+ )  ->  ( ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  ->  ( ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
u ( ball `  C
) r ) ) ) )
53523expa 1187 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( C  e.  ( *Met `  X
)  /\  u  e.  X )  /\  r  e.  RR+ )  ->  (
( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  ->  ( ( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( u
( ball `  C )
r ) ) ) )
5453reximdva 2831 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  ( *Met `  X )  /\  u  e.  X
)  ->  ( E. r  e.  RR+  ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  ->  E. r  e.  RR+  ( ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
u ( ball `  C
) r ) ) ) )
5554ex 434 . . . . . . . . . . . . . . . 16  |-  ( C  e.  ( *Met `  X )  ->  (
u  e.  X  -> 
( E. r  e.  RR+  ( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  ->  E. r  e.  RR+  (
( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( u
( ball `  C )
r ) ) ) ) )
5649, 55sylan9r 658 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( u  e.  Y  ->  ( E. r  e.  RR+  (
( u ( ball `  C ) r )  i^i  Y )  C_  x  ->  E. r  e.  RR+  ( ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
u ( ball `  C
) r ) ) ) ) )
5748, 56sylan9r 658 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  x  C_  Y
)  ->  ( u  e.  x  ->  ( E. r  e.  RR+  (
( u ( ball `  C ) r )  i^i  Y )  C_  x  ->  E. r  e.  RR+  ( ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
u ( ball `  C
) r ) ) ) ) )
5857adantrr 716 . . . . . . . . . . . . 13  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
u  e.  x  -> 
( E. r  e.  RR+  ( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  ->  E. r  e.  RR+  (
( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( u
( ball `  C )
r ) ) ) ) )
5947, 58mpdd 40 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
u  e.  x  ->  E. r  e.  RR+  (
( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( u
( ball `  C )
r ) ) ) )
6042eleq2d 2510 . . . . . . . . . . . . . . . 16  |-  ( y  =  u  ->  (
u  e.  ( y ( ball `  C
) r )  <->  u  e.  ( u ( ball `  C ) r ) ) )
6144, 60anbi12d 710 . . . . . . . . . . . . . . 15  |-  ( y  =  u  ->  (
( ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
y ( ball `  C
) r ) )  <-> 
( ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
u ( ball `  C
) r ) ) ) )
6261rexbidv 2739 . . . . . . . . . . . . . 14  |-  ( y  =  u  ->  ( E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) )  <->  E. r  e.  RR+  ( ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
u ( ball `  C
) r ) ) ) )
6362rspcev 3076 . . . . . . . . . . . . 13  |-  ( ( u  e.  x  /\  E. r  e.  RR+  (
( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( u
( ball `  C )
r ) ) )  ->  E. y  e.  x  E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) ) )
6463ex 434 . . . . . . . . . . . 12  |-  ( u  e.  x  ->  ( E. r  e.  RR+  (
( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( u
( ball `  C )
r ) )  ->  E. y  e.  x  E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) ) ) )
6559, 64sylcom 29 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
u  e.  x  ->  E. y  e.  x  E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) ) ) )
66 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  x  C_  Y )
6766sseld 3358 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
u  e.  x  ->  u  e.  Y )
)
6865, 67jcad 533 . . . . . . . . . 10  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
u  e.  x  -> 
( E. y  e.  x  E. r  e.  RR+  ( ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
y ( ball `  C
) r ) )  /\  u  e.  Y
) ) )
69 elin 3542 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( ( y ( ball `  C
) r )  i^i 
Y )  <->  ( u  e.  ( y ( ball `  C ) r )  /\  u  e.  Y
) )
70 ssel2 3354 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( (
y ( ball `  C
) r )  i^i 
Y ) )  ->  u  e.  x )
7169, 70sylan2br 476 . . . . . . . . . . . . . 14  |-  ( ( ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  ( u  e.  (
y ( ball `  C
) r )  /\  u  e.  Y )
)  ->  u  e.  x )
7271expr 615 . . . . . . . . . . . . 13  |-  ( ( ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) )  -> 
( u  e.  Y  ->  u  e.  x ) )
7372rexlimivw 2840 . . . . . . . . . . . 12  |-  ( E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) )  -> 
( u  e.  Y  ->  u  e.  x ) )
7473rexlimivw 2840 . . . . . . . . . . 11  |-  ( E. y  e.  x  E. r  e.  RR+  ( ( ( y ( ball `  C ) r )  i^i  Y )  C_  x  /\  u  e.  ( y ( ball `  C
) r ) )  ->  ( u  e.  Y  ->  u  e.  x ) )
7574imp 429 . . . . . . . . . 10  |-  ( ( E. y  e.  x  E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) )  /\  u  e.  Y )  ->  u  e.  x )
7668, 75impbid1 203 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
u  e.  x  <->  ( E. y  e.  x  E. r  e.  RR+  ( ( ( y ( ball `  C ) r )  i^i  Y )  C_  x  /\  u  e.  ( y ( ball `  C
) r ) )  /\  u  e.  Y
) ) )
77 elin 3542 . . . . . . . . . 10  |-  ( u  e.  ( U. {
z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  /\  ( z  i^i 
Y )  C_  x
) }  i^i  Y
)  <->  ( u  e. 
U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  (
y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) }  /\  u  e.  Y
) )
78 eluniab 4105 . . . . . . . . . . . 12  |-  ( u  e.  U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) } 
<->  E. z ( u  e.  z  /\  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  /\  (
z  i^i  Y )  C_  x ) ) )
79 ancom 450 . . . . . . . . . . . . . 14  |-  ( ( u  e.  z  /\  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  /\  (
z  i^i  Y )  C_  x ) )  <->  ( ( E. y  e.  x  E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  /\  (
z  i^i  Y )  C_  x )  /\  u  e.  z ) )
80 anass 649 . . . . . . . . . . . . . 14  |-  ( ( ( E. y  e.  x  E. r  e.  RR+  z  =  (
y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x )  /\  u  e.  z
)  <->  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) ) )
81 r19.41v 2876 . . . . . . . . . . . . . . . 16  |-  ( E. r  e.  RR+  (
z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) )  <->  ( E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  /\  ( ( z  i^i  Y )  C_  x  /\  u  e.  z ) ) )
8281rexbii 2743 . . . . . . . . . . . . . . 15  |-  ( E. y  e.  x  E. r  e.  RR+  ( z  =  ( y (
ball `  C )
r )  /\  (
( z  i^i  Y
)  C_  x  /\  u  e.  z )
)  <->  E. y  e.  x  ( E. r  e.  RR+  z  =  ( y
( ball `  C )
r )  /\  (
( z  i^i  Y
)  C_  x  /\  u  e.  z )
) )
83 r19.41v 2876 . . . . . . . . . . . . . . 15  |-  ( E. y  e.  x  ( E. r  e.  RR+  z  =  ( y
( ball `  C )
r )  /\  (
( z  i^i  Y
)  C_  x  /\  u  e.  z )
)  <->  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) ) )
8482, 83bitr2i 250 . . . . . . . . . . . . . 14  |-  ( ( E. y  e.  x  E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  /\  (
( z  i^i  Y
)  C_  x  /\  u  e.  z )
)  <->  E. y  e.  x  E. r  e.  RR+  (
z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) ) )
8579, 80, 843bitri 271 . . . . . . . . . . . . 13  |-  ( ( u  e.  z  /\  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  /\  (
z  i^i  Y )  C_  x ) )  <->  E. y  e.  x  E. r  e.  RR+  ( z  =  ( y ( ball `  C ) r )  /\  ( ( z  i^i  Y )  C_  x  /\  u  e.  z ) ) )
8685exbii 1634 . . . . . . . . . . . 12  |-  ( E. z ( u  e.  z  /\  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  /\  ( z  i^i 
Y )  C_  x
) )  <->  E. z E. y  e.  x  E. r  e.  RR+  (
z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) ) )
87 ovex 6119 . . . . . . . . . . . . . . . . 17  |-  ( y ( ball `  C
) r )  e. 
_V
88 ineq1 3548 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( y (
ball `  C )
r )  ->  (
z  i^i  Y )  =  ( ( y ( ball `  C
) r )  i^i 
Y ) )
8988sseq1d 3386 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( y (
ball `  C )
r )  ->  (
( z  i^i  Y
)  C_  x  <->  ( (
y ( ball `  C
) r )  i^i 
Y )  C_  x
) )
90 eleq2 2504 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( y (
ball `  C )
r )  ->  (
u  e.  z  <->  u  e.  ( y ( ball `  C ) r ) ) )
9189, 90anbi12d 710 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( y (
ball `  C )
r )  ->  (
( ( z  i^i 
Y )  C_  x  /\  u  e.  z
)  <->  ( ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
y ( ball `  C
) r ) ) ) )
9287, 91ceqsexv 3012 . . . . . . . . . . . . . . . 16  |-  ( E. z ( z  =  ( y ( ball `  C ) r )  /\  ( ( z  i^i  Y )  C_  x  /\  u  e.  z ) )  <->  ( (
( y ( ball `  C ) r )  i^i  Y )  C_  x  /\  u  e.  ( y ( ball `  C
) r ) ) )
9392rexbii 2743 . . . . . . . . . . . . . . 15  |-  ( E. r  e.  RR+  E. z
( z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) )  <->  E. r  e.  RR+  ( ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
y ( ball `  C
) r ) ) )
94 rexcom4 2995 . . . . . . . . . . . . . . 15  |-  ( E. r  e.  RR+  E. z
( z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) )  <->  E. z E. r  e.  RR+  (
z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) ) )
9593, 94bitr3i 251 . . . . . . . . . . . . . 14  |-  ( E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) )  <->  E. z E. r  e.  RR+  (
z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) ) )
9695rexbii 2743 . . . . . . . . . . . . 13  |-  ( E. y  e.  x  E. r  e.  RR+  ( ( ( y ( ball `  C ) r )  i^i  Y )  C_  x  /\  u  e.  ( y ( ball `  C
) r ) )  <->  E. y  e.  x  E. z E. r  e.  RR+  ( z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) ) )
97 rexcom4 2995 . . . . . . . . . . . . 13  |-  ( E. y  e.  x  E. z E. r  e.  RR+  ( z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) )  <->  E. z E. y  e.  x  E. r  e.  RR+  (
z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) ) )
9896, 97bitr2i 250 . . . . . . . . . . . 12  |-  ( E. z E. y  e.  x  E. r  e.  RR+  ( z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) )  <->  E. y  e.  x  E. r  e.  RR+  ( ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
y ( ball `  C
) r ) ) )
9978, 86, 983bitri 271 . . . . . . . . . . 11  |-  ( u  e.  U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) } 
<->  E. y  e.  x  E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) ) )
10099anbi1i 695 . . . . . . . . . 10  |-  ( ( u  e.  U. {
z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  /\  ( z  i^i 
Y )  C_  x
) }  /\  u  e.  Y )  <->  ( E. y  e.  x  E. r  e.  RR+  ( ( ( y ( ball `  C ) r )  i^i  Y )  C_  x  /\  u  e.  ( y ( ball `  C
) r ) )  /\  u  e.  Y
) )
10177, 100bitr2i 250 . . . . . . . . 9  |-  ( ( E. y  e.  x  E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) )  /\  u  e.  Y )  <->  u  e.  ( U. {
z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  /\  ( z  i^i 
Y )  C_  x
) }  i^i  Y
) )
10276, 101syl6bb 261 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
u  e.  x  <->  u  e.  ( U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  (
y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) }  i^i  Y ) ) )
103102eqrdv 2441 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  x  =  ( U. {
z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  /\  ( z  i^i 
Y )  C_  x
) }  i^i  Y
) )
104 ineq1 3548 . . . . . . . . 9  |-  ( u  =  U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) }  ->  ( u  i^i 
Y )  =  ( U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  (
y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) }  i^i  Y ) )
105104eqeq2d 2454 . . . . . . . 8  |-  ( u  =  U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) }  ->  ( x  =  ( u  i^i  Y
)  <->  x  =  ( U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  /\  (
z  i^i  Y )  C_  x ) }  i^i  Y ) ) )
106105rspcev 3076 . . . . . . 7  |-  ( ( U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  (
y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) }  e.  J  /\  x  =  ( U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  /\  (
z  i^i  Y )  C_  x ) }  i^i  Y ) )  ->  E. u  e.  J  x  =  ( u  i^i  Y ) )
10741, 103, 106syl2anc 661 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  E. u  e.  J  x  =  ( u  i^i  Y ) )
108107ex 434 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( (
x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
)  ->  E. u  e.  J  x  =  ( u  i^i  Y ) ) )
10920, 108impbid 191 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( E. u  e.  J  x  =  ( u  i^i 
Y )  <->  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) ) )
110 simpr 461 . . . . . . . . . . 11  |-  ( ( Y  C_  X  /\  y  e.  Y )  ->  y  e.  Y )
11124, 110elind 3543 . . . . . . . . . 10  |-  ( ( Y  C_  X  /\  y  e.  Y )  ->  y  e.  ( X  i^i  Y ) )
112 metrest.1 . . . . . . . . . . . . . . 15  |-  D  =  ( C  |`  ( Y  X.  Y ) )
113112blres 20009 . . . . . . . . . . . . . 14  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  ( X  i^i  Y )  /\  r  e.  RR* )  ->  ( y (
ball `  D )
r )  =  ( ( y ( ball `  C ) r )  i^i  Y ) )
114113sseq1d 3386 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  ( X  i^i  Y )  /\  r  e.  RR* )  ->  ( ( y ( ball `  D
) r )  C_  x 
<->  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x )
)
1151143expa 1187 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( *Met `  X
)  /\  y  e.  ( X  i^i  Y ) )  /\  r  e. 
RR* )  ->  (
( y ( ball `  D ) r ) 
C_  x  <->  ( (
y ( ball `  C
) r )  i^i 
Y )  C_  x
) )
11625, 115sylan2 474 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( *Met `  X
)  /\  y  e.  ( X  i^i  Y ) )  /\  r  e.  RR+ )  ->  ( ( y ( ball `  D
) r )  C_  x 
<->  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x )
)
117116rexbidva 2735 . . . . . . . . . 10  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  ( X  i^i  Y ) )  ->  ( E. r  e.  RR+  ( y ( ball `  D
) r )  C_  x 
<->  E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x )
)
118111, 117sylan2 474 . . . . . . . . 9  |-  ( ( C  e.  ( *Met `  X )  /\  ( Y  C_  X  /\  y  e.  Y
) )  ->  ( E. r  e.  RR+  (
y ( ball `  D
) r )  C_  x 
<->  E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x )
)
119118anassrs 648 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  y  e.  Y )  ->  ( E. r  e.  RR+  (
y ( ball `  D
) r )  C_  x 
<->  E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x )
)
12023, 119sylan2 474 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  y  e.  x ) )  -> 
( E. r  e.  RR+  ( y ( ball `  D ) r ) 
C_  x  <->  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )
121120anassrs 648 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  Y  C_  X )  /\  x  C_  Y )  /\  y  e.  x )  ->  ( E. r  e.  RR+  (
y ( ball `  D
) r )  C_  x 
<->  E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x )
)
122121ralbidva 2734 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  x  C_  Y
)  ->  ( A. y  e.  x  E. r  e.  RR+  ( y ( ball `  D
) r )  C_  x 
<-> 
A. y  e.  x  E. r  e.  RR+  (
( y ( ball `  C ) r )  i^i  Y )  C_  x ) )
123122pm5.32da 641 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( (
x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( y ( ball `  D
) r )  C_  x )  <->  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) ) )
124109, 123bitr4d 256 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( E. u  e.  J  x  =  ( u  i^i 
Y )  <->  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( y (
ball `  D )
r )  C_  x
) ) )
12521adantr 465 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  J  e.  Top )
126 id 22 . . . . 5  |-  ( Y 
C_  X  ->  Y  C_  X )
1272mopnm 20022 . . . . 5  |-  ( C  e.  ( *Met `  X )  ->  X  e.  J )
128 ssexg 4441 . . . . 5  |-  ( ( Y  C_  X  /\  X  e.  J )  ->  Y  e.  _V )
129126, 127, 128syl2anr 478 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  Y  e.  _V )
130 elrest 14369 . . . 4  |-  ( ( J  e.  Top  /\  Y  e.  _V )  ->  ( x  e.  ( Jt  Y )  <->  E. u  e.  J  x  =  ( u  i^i  Y ) ) )
131125, 129, 130syl2anc 661 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( x  e.  ( Jt  Y )  <->  E. u  e.  J  x  =  ( u  i^i  Y ) ) )
132 xmetres2 19939 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( C  |`  ( Y  X.  Y
) )  e.  ( *Met `  Y
) )
133112, 132syl5eqel 2527 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  D  e.  ( *Met `  Y
) )
134 metrest.4 . . . . 5  |-  K  =  ( MetOpen `  D )
135134elmopn2 20023 . . . 4  |-  ( D  e.  ( *Met `  Y )  ->  (
x  e.  K  <->  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( y (
ball `  D )
r )  C_  x
) ) )
136133, 135syl 16 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( x  e.  K  <->  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( y ( ball `  D ) r ) 
C_  x ) ) )
137124, 131, 1363bitr4d 285 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( x  e.  ( Jt  Y )  <->  x  e.  K ) )
138137eqrdv 2441 1  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( Jt  Y
)  =  K )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756   {cab 2429   A.wral 2718   E.wrex 2719   _Vcvv 2975    i^i cin 3330    C_ wss 3331   U.cuni 4094    X. cxp 4841    |` cres 4845   ` cfv 5421  (class class class)co 6094   RR*cxr 9420   RR+crp 10994   ↾t crest 14362   *Metcxmt 17804   ballcbl 17806   MetOpencmopn 17809   Topctop 18501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-er 7104  df-map 7219  df-en 7314  df-dom 7315  df-sdom 7316  df-sup 7694  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-n0 10583  df-z 10650  df-uz 10865  df-q 10957  df-rp 10995  df-xneg 11092  df-xadd 11093  df-xmul 11094  df-rest 14364  df-topgen 14385  df-psmet 17812  df-xmet 17813  df-bl 17815  df-mopn 17816  df-top 18506  df-bases 18508  df-topon 18509
This theorem is referenced by:  ressxms  20103  nrginvrcn  20275  resubmet  20382  tgioo2  20383  metdscn2  20436  divcn  20447  dfii3  20462  cncfcn  20488  cmetss  20828  minveclem4a  20920  ftc1lem6  21516  ulmdvlem3  21870  abelth  21909  cxpcn3  22189  rlimcnp  22362  minvecolem4b  24282  minvecolem4  24284  hhsscms  24683  ftc1cnnc  28469
  Copyright terms: Public domain W3C validator