MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metres Structured version   Unicode version

Theorem metres 20993
Description: A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
metres  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( R  X.  R
) )  e.  ( Met `  ( X  i^i  R ) ) )

Proof of Theorem metres
StepHypRef Expression
1 metf 20958 . . 3  |-  ( D  e.  ( Met `  X
)  ->  D :
( X  X.  X
) --> RR )
2 fdm 5741 . . 3  |-  ( D : ( X  X.  X ) --> RR  ->  dom 
D  =  ( X  X.  X ) )
3 metreslem 20990 . . 3  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  ( R  X.  R ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )
41, 2, 33syl 20 . 2  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( R  X.  R
) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R
) ) ) )
5 inss1 3714 . . 3  |-  ( X  i^i  R )  C_  X
6 metres2 20991 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( X  i^i  R )  C_  X )  ->  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R
) ) )  e.  ( Met `  ( X  i^i  R ) ) )
75, 6mpan2 671 . 2  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) )  e.  ( Met `  ( X  i^i  R
) ) )
84, 7eqeltrd 2545 1  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( R  X.  R
) )  e.  ( Met `  ( X  i^i  R ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 1819    i^i cin 3470    C_ wss 3471    X. cxp 5006   dom cdm 5008    |` cres 5010   -->wf 5590   ` cfv 5594   RRcr 9508   Metcme 18530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-mulcl 9571  ax-i2m1 9577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-xadd 11344  df-xmet 18538  df-met 18539
This theorem is referenced by:  ressms  21154
  Copyright terms: Public domain W3C validator