MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem2 Structured version   Unicode version

Theorem metnrmlem2 21127
Description: Lemma for metnrm 21129. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f  |-  F  =  ( x  e.  X  |->  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
metdscn.j  |-  J  =  ( MetOpen `  D )
metnrmlem.1  |-  ( ph  ->  D  e.  ( *Met `  X ) )
metnrmlem.2  |-  ( ph  ->  S  e.  ( Clsd `  J ) )
metnrmlem.3  |-  ( ph  ->  T  e.  ( Clsd `  J ) )
metnrmlem.4  |-  ( ph  ->  ( S  i^i  T
)  =  (/) )
metnrmlem.u  |-  U  = 
U_ t  e.  T  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) )
Assertion
Ref Expression
metnrmlem2  |-  ( ph  ->  ( U  e.  J  /\  T  C_  U ) )
Distinct variable groups:    x, y,
t, D    t, J, y    ph, t    t, T, x, y    t, S, x, y    t, X, x, y    t, F
Allowed substitution hints:    ph( x, y)    U( x, y, t)    F( x, y)    J( x)

Proof of Theorem metnrmlem2
StepHypRef Expression
1 metnrmlem.u . . 3  |-  U  = 
U_ t  e.  T  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) )
2 metnrmlem.1 . . . . 5  |-  ( ph  ->  D  e.  ( *Met `  X ) )
3 metdscn.j . . . . . 6  |-  J  =  ( MetOpen `  D )
43mopntop 20706 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
52, 4syl 16 . . . 4  |-  ( ph  ->  J  e.  Top )
62adantr 465 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  D  e.  ( *Met `  X ) )
7 metnrmlem.3 . . . . . . . . 9  |-  ( ph  ->  T  e.  ( Clsd `  J ) )
8 eqid 2467 . . . . . . . . . 10  |-  U. J  =  U. J
98cldss 19324 . . . . . . . . 9  |-  ( T  e.  ( Clsd `  J
)  ->  T  C_  U. J
)
107, 9syl 16 . . . . . . . 8  |-  ( ph  ->  T  C_  U. J )
113mopnuni 20707 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
122, 11syl 16 . . . . . . . 8  |-  ( ph  ->  X  =  U. J
)
1310, 12sseqtr4d 3541 . . . . . . 7  |-  ( ph  ->  T  C_  X )
1413sselda 3504 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  X )
15 metdscn.f . . . . . . . . . 10  |-  F  =  ( x  e.  X  |->  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
16 metnrmlem.2 . . . . . . . . . 10  |-  ( ph  ->  S  e.  ( Clsd `  J ) )
17 metnrmlem.4 . . . . . . . . . 10  |-  ( ph  ->  ( S  i^i  T
)  =  (/) )
1815, 3, 2, 16, 7, 17metnrmlem1a 21125 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  (
0  <  ( F `  t )  /\  if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  e.  RR+ )
)
1918simprd 463 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  e.  RR+ )
2019rphalfcld 11268 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 )  e.  RR+ )
2120rpxrd 11257 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 )  e.  RR* )
223blopn 20766 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  t  e.  X  /\  ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 )  e.  RR* )  ->  ( t (
ball `  D )
( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) )  e.  J )
236, 14, 21, 22syl3anc 1228 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  (
t ( ball `  D
) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) )  e.  J )
2423ralrimiva 2878 . . . 4  |-  ( ph  ->  A. t  e.  T  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) )  e.  J )
25 iunopn 19202 . . . 4  |-  ( ( J  e.  Top  /\  A. t  e.  T  ( t ( ball `  D
) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) )  e.  J )  ->  U_ t  e.  T  ( t
( ball `  D )
( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) )  e.  J )
265, 24, 25syl2anc 661 . . 3  |-  ( ph  ->  U_ t  e.  T  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) )  e.  J )
271, 26syl5eqel 2559 . 2  |-  ( ph  ->  U  e.  J )
28 blcntr 20679 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  t  e.  X  /\  ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 )  e.  RR+ )  ->  t  e.  ( t ( ball `  D
) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) ) )
296, 14, 20, 28syl3anc 1228 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) ) )
3029snssd 4172 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  { t }  C_  ( t
( ball `  D )
( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) ) )
3130ralrimiva 2878 . . . 4  |-  ( ph  ->  A. t  e.  T  { t }  C_  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) ) )
32 ss2iun 4341 . . . 4  |-  ( A. t  e.  T  {
t }  C_  (
t ( ball `  D
) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) )  ->  U_ t  e.  T  { t }  C_  U_ t  e.  T  ( t ( ball `  D
) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) ) )
3331, 32syl 16 . . 3  |-  ( ph  ->  U_ t  e.  T  { t }  C_  U_ t  e.  T  ( t ( ball `  D
) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) ) )
34 iunid 4380 . . . 4  |-  U_ t  e.  T  { t }  =  T
3534eqcomi 2480 . . 3  |-  T  = 
U_ t  e.  T  { t }
3633, 35, 13sstr4g 3545 . 2  |-  ( ph  ->  T  C_  U )
3727, 36jca 532 1  |-  ( ph  ->  ( U  e.  J  /\  T  C_  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814    i^i cin 3475    C_ wss 3476   (/)c0 3785   ifcif 3939   {csn 4027   U.cuni 4245   U_ciun 4325   class class class wbr 4447    |-> cmpt 4505   `'ccnv 4998   ran crn 5000   ` cfv 5588  (class class class)co 6284   supcsup 7900   0cc0 9492   1c1 9493   RR*cxr 9627    < clt 9628    <_ cle 9629    / cdiv 10206   2c2 10585   RR+crp 11220   *Metcxmt 18202   ballcbl 18204   MetOpencmopn 18207   Topctop 19189   Clsdccld 19311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-n0 10796  df-z 10865  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-icc 11536  df-topgen 14699  df-psmet 18210  df-xmet 18211  df-bl 18213  df-mopn 18214  df-top 19194  df-bases 19196  df-topon 19197  df-cld 19314  df-ntr 19315  df-cls 19316
This theorem is referenced by:  metnrmlem3  21128
  Copyright terms: Public domain W3C validator