MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem1a Structured version   Unicode version

Theorem metnrmlem1a 20456
Description: Lemma for metnrm 20460. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f  |-  F  =  ( x  e.  X  |->  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
metdscn.j  |-  J  =  ( MetOpen `  D )
metnrmlem.1  |-  ( ph  ->  D  e.  ( *Met `  X ) )
metnrmlem.2  |-  ( ph  ->  S  e.  ( Clsd `  J ) )
metnrmlem.3  |-  ( ph  ->  T  e.  ( Clsd `  J ) )
metnrmlem.4  |-  ( ph  ->  ( S  i^i  T
)  =  (/) )
Assertion
Ref Expression
metnrmlem1a  |-  ( (
ph  /\  A  e.  T )  ->  (
0  <  ( F `  A )  /\  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e.  RR+ )
)
Distinct variable groups:    x, y, A    x, D, y    y, J    x, T, y    x, S, y    x, X, y
Allowed substitution hints:    ph( x, y)    F( x, y)    J( x)

Proof of Theorem metnrmlem1a
StepHypRef Expression
1 metnrmlem.4 . . . . . 6  |-  ( ph  ->  ( S  i^i  T
)  =  (/) )
21adantr 465 . . . . 5  |-  ( (
ph  /\  A  e.  T )  ->  ( S  i^i  T )  =  (/) )
3 inelcm 3754 . . . . . . . 8  |-  ( ( A  e.  S  /\  A  e.  T )  ->  ( S  i^i  T
)  =/=  (/) )
43expcom 435 . . . . . . 7  |-  ( A  e.  T  ->  ( A  e.  S  ->  ( S  i^i  T )  =/=  (/) ) )
54adantl 466 . . . . . 6  |-  ( (
ph  /\  A  e.  T )  ->  ( A  e.  S  ->  ( S  i^i  T )  =/=  (/) ) )
65necon2bd 2684 . . . . 5  |-  ( (
ph  /\  A  e.  T )  ->  (
( S  i^i  T
)  =  (/)  ->  -.  A  e.  S )
)
72, 6mpd 15 . . . 4  |-  ( (
ph  /\  A  e.  T )  ->  -.  A  e.  S )
8 eqcom 2445 . . . . . 6  |-  ( 0  =  ( F `  A )  <->  ( F `  A )  =  0 )
9 metnrmlem.1 . . . . . . . 8  |-  ( ph  ->  D  e.  ( *Met `  X ) )
109adantr 465 . . . . . . 7  |-  ( (
ph  /\  A  e.  T )  ->  D  e.  ( *Met `  X ) )
11 metnrmlem.2 . . . . . . . . . 10  |-  ( ph  ->  S  e.  ( Clsd `  J ) )
1211adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  T )  ->  S  e.  ( Clsd `  J
) )
13 eqid 2443 . . . . . . . . . 10  |-  U. J  =  U. J
1413cldss 18655 . . . . . . . . 9  |-  ( S  e.  ( Clsd `  J
)  ->  S  C_  U. J
)
1512, 14syl 16 . . . . . . . 8  |-  ( (
ph  /\  A  e.  T )  ->  S  C_ 
U. J )
16 metdscn.j . . . . . . . . . 10  |-  J  =  ( MetOpen `  D )
1716mopnuni 20038 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
1810, 17syl 16 . . . . . . . 8  |-  ( (
ph  /\  A  e.  T )  ->  X  =  U. J )
1915, 18sseqtr4d 3414 . . . . . . 7  |-  ( (
ph  /\  A  e.  T )  ->  S  C_  X )
20 metnrmlem.3 . . . . . . . . . . 11  |-  ( ph  ->  T  e.  ( Clsd `  J ) )
2120adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  T )  ->  T  e.  ( Clsd `  J
) )
2213cldss 18655 . . . . . . . . . 10  |-  ( T  e.  ( Clsd `  J
)  ->  T  C_  U. J
)
2321, 22syl 16 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  T )  ->  T  C_ 
U. J )
2423, 18sseqtr4d 3414 . . . . . . . 8  |-  ( (
ph  /\  A  e.  T )  ->  T  C_  X )
25 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  A  e.  T )  ->  A  e.  T )
2624, 25sseldd 3378 . . . . . . 7  |-  ( (
ph  /\  A  e.  T )  ->  A  e.  X )
27 metdscn.f . . . . . . . 8  |-  F  =  ( x  e.  X  |->  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
2827, 16metdseq0 20452 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( ( F `  A )  =  0  <->  A  e.  ( ( cls `  J
) `  S )
) )
2910, 19, 26, 28syl3anc 1218 . . . . . 6  |-  ( (
ph  /\  A  e.  T )  ->  (
( F `  A
)  =  0  <->  A  e.  ( ( cls `  J
) `  S )
) )
308, 29syl5bb 257 . . . . 5  |-  ( (
ph  /\  A  e.  T )  ->  (
0  =  ( F `
 A )  <->  A  e.  ( ( cls `  J
) `  S )
) )
31 cldcls 18668 . . . . . . 7  |-  ( S  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  S )  =  S )
3212, 31syl 16 . . . . . 6  |-  ( (
ph  /\  A  e.  T )  ->  (
( cls `  J
) `  S )  =  S )
3332eleq2d 2510 . . . . 5  |-  ( (
ph  /\  A  e.  T )  ->  ( A  e.  ( ( cls `  J ) `  S )  <->  A  e.  S ) )
3430, 33bitrd 253 . . . 4  |-  ( (
ph  /\  A  e.  T )  ->  (
0  =  ( F `
 A )  <->  A  e.  S ) )
357, 34mtbird 301 . . 3  |-  ( (
ph  /\  A  e.  T )  ->  -.  0  =  ( F `  A ) )
3627metdsf 20446 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  F : X
--> ( 0 [,] +oo ) )
3710, 19, 36syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  A  e.  T )  ->  F : X --> ( 0 [,] +oo ) )
3837, 26ffvelrnd 5865 . . . . . 6  |-  ( (
ph  /\  A  e.  T )  ->  ( F `  A )  e.  ( 0 [,] +oo ) )
39 elxrge0 11415 . . . . . . 7  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  <->  ( ( F `
 A )  e. 
RR*  /\  0  <_  ( F `  A ) ) )
4039simprbi 464 . . . . . 6  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  ->  0  <_ 
( F `  A
) )
4138, 40syl 16 . . . . 5  |-  ( (
ph  /\  A  e.  T )  ->  0  <_  ( F `  A
) )
42 0xr 9451 . . . . . 6  |-  0  e.  RR*
4339simplbi 460 . . . . . . 7  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  ->  ( F `
 A )  e. 
RR* )
4438, 43syl 16 . . . . . 6  |-  ( (
ph  /\  A  e.  T )  ->  ( F `  A )  e.  RR* )
45 xrleloe 11142 . . . . . 6  |-  ( ( 0  e.  RR*  /\  ( F `  A )  e.  RR* )  ->  (
0  <_  ( F `  A )  <->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) ) )
4642, 44, 45sylancr 663 . . . . 5  |-  ( (
ph  /\  A  e.  T )  ->  (
0  <_  ( F `  A )  <->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) ) )
4741, 46mpbid 210 . . . 4  |-  ( (
ph  /\  A  e.  T )  ->  (
0  <  ( F `  A )  \/  0  =  ( F `  A ) ) )
4847ord 377 . . 3  |-  ( (
ph  /\  A  e.  T )  ->  ( -.  0  <  ( F `
 A )  -> 
0  =  ( F `
 A ) ) )
4935, 48mt3d 125 . 2  |-  ( (
ph  /\  A  e.  T )  ->  0  <  ( F `  A
) )
50 1re 9406 . . . . . 6  |-  1  e.  RR
5150rexri 9457 . . . . 5  |-  1  e.  RR*
52 ifcl 3852 . . . . 5  |-  ( ( 1  e.  RR*  /\  ( F `  A )  e.  RR* )  ->  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e.  RR* )
5351, 44, 52sylancr 663 . . . 4  |-  ( (
ph  /\  A  e.  T )  ->  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e.  RR* )
54 1red 9422 . . . 4  |-  ( (
ph  /\  A  e.  T )  ->  1  e.  RR )
55 0lt1 9883 . . . . . 6  |-  0  <  1
56 breq2 4317 . . . . . . 7  |-  ( 1  =  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  -> 
( 0  <  1  <->  0  <  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) ) ) )
57 breq2 4317 . . . . . . 7  |-  ( ( F `  A )  =  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  -> 
( 0  <  ( F `  A )  <->  0  <  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) ) ) )
5856, 57ifboth 3846 . . . . . 6  |-  ( ( 0  <  1  /\  0  <  ( F `
 A ) )  ->  0  <  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) ) )
5955, 49, 58sylancr 663 . . . . 5  |-  ( (
ph  /\  A  e.  T )  ->  0  <  if ( 1  <_ 
( F `  A
) ,  1 ,  ( F `  A
) ) )
60 xrltle 11147 . . . . . 6  |-  ( ( 0  e.  RR*  /\  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e.  RR* )  ->  ( 0  <  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  ->  0  <_  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) ) ) )
6142, 53, 60sylancr 663 . . . . 5  |-  ( (
ph  /\  A  e.  T )  ->  (
0  <  if (
1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  -> 
0  <_  if (
1  <_  ( F `  A ) ,  1 ,  ( F `  A ) ) ) )
6259, 61mpd 15 . . . 4  |-  ( (
ph  /\  A  e.  T )  ->  0  <_  if ( 1  <_ 
( F `  A
) ,  1 ,  ( F `  A
) ) )
63 xrmin1 11170 . . . . 5  |-  ( ( 1  e.  RR*  /\  ( F `  A )  e.  RR* )  ->  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  <_  1 )
6451, 44, 63sylancr 663 . . . 4  |-  ( (
ph  /\  A  e.  T )  ->  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  <_  1 )
65 xrrege0 11167 . . . 4  |-  ( ( ( if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e. 
RR*  /\  1  e.  RR )  /\  (
0  <_  if (
1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  /\  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  <_  1 ) )  ->  if (
1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e.  RR )
6653, 54, 62, 64, 65syl22anc 1219 . . 3  |-  ( (
ph  /\  A  e.  T )  ->  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e.  RR )
6766, 59elrpd 11046 . 2  |-  ( (
ph  /\  A  e.  T )  ->  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e.  RR+ )
6849, 67jca 532 1  |-  ( (
ph  /\  A  e.  T )  ->  (
0  <  ( F `  A )  /\  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e.  RR+ )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2620    i^i cin 3348    C_ wss 3349   (/)c0 3658   ifcif 3812   U.cuni 4112   class class class wbr 4313    e. cmpt 4371   `'ccnv 4860   ran crn 4862   -->wf 5435   ` cfv 5439  (class class class)co 6112   supcsup 7711   RRcr 9302   0cc0 9303   1c1 9304   +oocpnf 9436   RR*cxr 9438    < clt 9439    <_ cle 9440   RR+crp 11012   [,]cicc 11324   *Metcxmt 17823   MetOpencmopn 17828   Clsdccld 18642   clsccl 18644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-er 7122  df-map 7237  df-en 7332  df-dom 7333  df-sdom 7334  df-sup 7712  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-n0 10601  df-z 10668  df-uz 10883  df-q 10975  df-rp 11013  df-xneg 11110  df-xadd 11111  df-xmul 11112  df-icc 11328  df-topgen 14403  df-psmet 17831  df-xmet 17832  df-bl 17834  df-mopn 17835  df-top 18525  df-bases 18527  df-topon 18528  df-cld 18645  df-ntr 18646  df-cls 18647
This theorem is referenced by:  metnrmlem2  20458  metnrmlem3  20459
  Copyright terms: Public domain W3C validator