Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metf1o Structured version   Unicode version

Theorem metf1o 31791
Description: Use a bijection with a metric space to construct a metric on a set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
metf1o.2  |-  N  =  ( x  e.  Y ,  y  e.  Y  |->  ( ( F `  x ) M ( F `  y ) ) )
Assertion
Ref Expression
metf1o  |-  ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  N  e.  ( Met `  Y
) )
Distinct variable groups:    x, M, y    x, X, y    x, Y, y    x, F, y   
x, A, y
Allowed substitution hints:    N( x, y)

Proof of Theorem metf1o
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of 5831 . . . . . . 7  |-  ( F : Y -1-1-onto-> X  ->  F : Y
--> X )
2 ffvelrn 6035 . . . . . . . . 9  |-  ( ( F : Y --> X  /\  x  e.  Y )  ->  ( F `  x
)  e.  X )
32ex 435 . . . . . . . 8  |-  ( F : Y --> X  -> 
( x  e.  Y  ->  ( F `  x
)  e.  X ) )
4 ffvelrn 6035 . . . . . . . . 9  |-  ( ( F : Y --> X  /\  y  e.  Y )  ->  ( F `  y
)  e.  X )
54ex 435 . . . . . . . 8  |-  ( F : Y --> X  -> 
( y  e.  Y  ->  ( F `  y
)  e.  X ) )
63, 5anim12d 565 . . . . . . 7  |-  ( F : Y --> X  -> 
( ( x  e.  Y  /\  y  e.  Y )  ->  (
( F `  x
)  e.  X  /\  ( F `  y )  e.  X ) ) )
71, 6syl 17 . . . . . 6  |-  ( F : Y -1-1-onto-> X  ->  ( (
x  e.  Y  /\  y  e.  Y )  ->  ( ( F `  x )  e.  X  /\  ( F `  y
)  e.  X ) ) )
8 metcl 21278 . . . . . . 7  |-  ( ( M  e.  ( Met `  X )  /\  ( F `  x )  e.  X  /\  ( F `  y )  e.  X )  ->  (
( F `  x
) M ( F `
 y ) )  e.  RR )
983expib 1208 . . . . . 6  |-  ( M  e.  ( Met `  X
)  ->  ( (
( F `  x
)  e.  X  /\  ( F `  y )  e.  X )  -> 
( ( F `  x ) M ( F `  y ) )  e.  RR ) )
107, 9sylan9r 662 . . . . 5  |-  ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  (
( x  e.  Y  /\  y  e.  Y
)  ->  ( ( F `  x ) M ( F `  y ) )  e.  RR ) )
11103adant1 1023 . . . 4  |-  ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  (
( x  e.  Y  /\  y  e.  Y
)  ->  ( ( F `  x ) M ( F `  y ) )  e.  RR ) )
1211ralrimivv 2852 . . 3  |-  ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  A. x  e.  Y  A. y  e.  Y  ( ( F `  x ) M ( F `  y ) )  e.  RR )
13 metf1o.2 . . . 4  |-  N  =  ( x  e.  Y ,  y  e.  Y  |->  ( ( F `  x ) M ( F `  y ) ) )
1413fmpt2 6874 . . 3  |-  ( A. x  e.  Y  A. y  e.  Y  (
( F `  x
) M ( F `
 y ) )  e.  RR  <->  N :
( Y  X.  Y
) --> RR )
1512, 14sylib 199 . 2  |-  ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  N : ( Y  X.  Y ) --> RR )
16 fveq2 5881 . . . . . . . . . . 11  |-  ( x  =  u  ->  ( F `  x )  =  ( F `  u ) )
1716oveq1d 6320 . . . . . . . . . 10  |-  ( x  =  u  ->  (
( F `  x
) M ( F `
 y ) )  =  ( ( F `
 u ) M ( F `  y
) ) )
18 fveq2 5881 . . . . . . . . . . 11  |-  ( y  =  v  ->  ( F `  y )  =  ( F `  v ) )
1918oveq2d 6321 . . . . . . . . . 10  |-  ( y  =  v  ->  (
( F `  u
) M ( F `
 y ) )  =  ( ( F `
 u ) M ( F `  v
) ) )
20 ovex 6333 . . . . . . . . . 10  |-  ( ( F `  u ) M ( F `  v ) )  e. 
_V
2117, 19, 13, 20ovmpt2 6446 . . . . . . . . 9  |-  ( ( u  e.  Y  /\  v  e.  Y )  ->  ( u N v )  =  ( ( F `  u ) M ( F `  v ) ) )
2221eqeq1d 2431 . . . . . . . 8  |-  ( ( u  e.  Y  /\  v  e.  Y )  ->  ( ( u N v )  =  0  <-> 
( ( F `  u ) M ( F `  v ) )  =  0 ) )
2322adantl 467 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( u  e.  Y  /\  v  e.  Y ) )  -> 
( ( u N v )  =  0  <-> 
( ( F `  u ) M ( F `  v ) )  =  0 ) )
24 ffvelrn 6035 . . . . . . . . . . . . 13  |-  ( ( F : Y --> X  /\  u  e.  Y )  ->  ( F `  u
)  e.  X )
2524ex 435 . . . . . . . . . . . 12  |-  ( F : Y --> X  -> 
( u  e.  Y  ->  ( F `  u
)  e.  X ) )
26 ffvelrn 6035 . . . . . . . . . . . . 13  |-  ( ( F : Y --> X  /\  v  e.  Y )  ->  ( F `  v
)  e.  X )
2726ex 435 . . . . . . . . . . . 12  |-  ( F : Y --> X  -> 
( v  e.  Y  ->  ( F `  v
)  e.  X ) )
2825, 27anim12d 565 . . . . . . . . . . 11  |-  ( F : Y --> X  -> 
( ( u  e.  Y  /\  v  e.  Y )  ->  (
( F `  u
)  e.  X  /\  ( F `  v )  e.  X ) ) )
291, 28syl 17 . . . . . . . . . 10  |-  ( F : Y -1-1-onto-> X  ->  ( (
u  e.  Y  /\  v  e.  Y )  ->  ( ( F `  u )  e.  X  /\  ( F `  v
)  e.  X ) ) )
3029imp 430 . . . . . . . . 9  |-  ( ( F : Y -1-1-onto-> X  /\  ( u  e.  Y  /\  v  e.  Y
) )  ->  (
( F `  u
)  e.  X  /\  ( F `  v )  e.  X ) )
3130adantll 718 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( u  e.  Y  /\  v  e.  Y ) )  -> 
( ( F `  u )  e.  X  /\  ( F `  v
)  e.  X ) )
32 meteq0 21285 . . . . . . . . . 10  |-  ( ( M  e.  ( Met `  X )  /\  ( F `  u )  e.  X  /\  ( F `  v )  e.  X )  ->  (
( ( F `  u ) M ( F `  v ) )  =  0  <->  ( F `  u )  =  ( F `  v ) ) )
33323expb 1206 . . . . . . . . 9  |-  ( ( M  e.  ( Met `  X )  /\  (
( F `  u
)  e.  X  /\  ( F `  v )  e.  X ) )  ->  ( ( ( F `  u ) M ( F `  v ) )  =  0  <->  ( F `  u )  =  ( F `  v ) ) )
3433adantlr 719 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( ( F `  u )  e.  X  /\  ( F `  v )  e.  X ) )  -> 
( ( ( F `
 u ) M ( F `  v
) )  =  0  <-> 
( F `  u
)  =  ( F `
 v ) ) )
3531, 34syldan 472 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( u  e.  Y  /\  v  e.  Y ) )  -> 
( ( ( F `
 u ) M ( F `  v
) )  =  0  <-> 
( F `  u
)  =  ( F `
 v ) ) )
36 f1of1 5830 . . . . . . . . 9  |-  ( F : Y -1-1-onto-> X  ->  F : Y -1-1-> X )
37 f1fveq 6178 . . . . . . . . 9  |-  ( ( F : Y -1-1-> X  /\  ( u  e.  Y  /\  v  e.  Y
) )  ->  (
( F `  u
)  =  ( F `
 v )  <->  u  =  v ) )
3836, 37sylan 473 . . . . . . . 8  |-  ( ( F : Y -1-1-onto-> X  /\  ( u  e.  Y  /\  v  e.  Y
) )  ->  (
( F `  u
)  =  ( F `
 v )  <->  u  =  v ) )
3938adantll 718 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( u  e.  Y  /\  v  e.  Y ) )  -> 
( ( F `  u )  =  ( F `  v )  <-> 
u  =  v ) )
4023, 35, 393bitrd 282 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( u  e.  Y  /\  v  e.  Y ) )  -> 
( ( u N v )  =  0  <-> 
u  =  v ) )
41 ffvelrn 6035 . . . . . . . . . . . . . . 15  |-  ( ( F : Y --> X  /\  w  e.  Y )  ->  ( F `  w
)  e.  X )
4241ex 435 . . . . . . . . . . . . . 14  |-  ( F : Y --> X  -> 
( w  e.  Y  ->  ( F `  w
)  e.  X ) )
4328, 42anim12d 565 . . . . . . . . . . . . 13  |-  ( F : Y --> X  -> 
( ( ( u  e.  Y  /\  v  e.  Y )  /\  w  e.  Y )  ->  (
( ( F `  u )  e.  X  /\  ( F `  v
)  e.  X )  /\  ( F `  w )  e.  X
) ) )
441, 43syl 17 . . . . . . . . . . . 12  |-  ( F : Y -1-1-onto-> X  ->  ( (
( u  e.  Y  /\  v  e.  Y
)  /\  w  e.  Y )  ->  (
( ( F `  u )  e.  X  /\  ( F `  v
)  e.  X )  /\  ( F `  w )  e.  X
) ) )
4544imp 430 . . . . . . . . . . 11  |-  ( ( F : Y -1-1-onto-> X  /\  ( ( u  e.  Y  /\  v  e.  Y )  /\  w  e.  Y ) )  -> 
( ( ( F `
 u )  e.  X  /\  ( F `
 v )  e.  X )  /\  ( F `  w )  e.  X ) )
4645adantll 718 . . . . . . . . . 10  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( (
u  e.  Y  /\  v  e.  Y )  /\  w  e.  Y
) )  ->  (
( ( F `  u )  e.  X  /\  ( F `  v
)  e.  X )  /\  ( F `  w )  e.  X
) )
47 mettri2 21287 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ( Met `  X )  /\  (
( F `  w
)  e.  X  /\  ( F `  u )  e.  X  /\  ( F `  v )  e.  X ) )  -> 
( ( F `  u ) M ( F `  v ) )  <_  ( (
( F `  w
) M ( F `
 u ) )  +  ( ( F `
 w ) M ( F `  v
) ) ) )
4847expcom 436 . . . . . . . . . . . . . 14  |-  ( ( ( F `  w
)  e.  X  /\  ( F `  u )  e.  X  /\  ( F `  v )  e.  X )  ->  ( M  e.  ( Met `  X )  ->  (
( F `  u
) M ( F `
 v ) )  <_  ( ( ( F `  w ) M ( F `  u ) )  +  ( ( F `  w ) M ( F `  v ) ) ) ) )
49483expb 1206 . . . . . . . . . . . . 13  |-  ( ( ( F `  w
)  e.  X  /\  ( ( F `  u )  e.  X  /\  ( F `  v
)  e.  X ) )  ->  ( M  e.  ( Met `  X
)  ->  ( ( F `  u ) M ( F `  v ) )  <_ 
( ( ( F `
 w ) M ( F `  u
) )  +  ( ( F `  w
) M ( F `
 v ) ) ) ) )
5049ancoms 454 . . . . . . . . . . . 12  |-  ( ( ( ( F `  u )  e.  X  /\  ( F `  v
)  e.  X )  /\  ( F `  w )  e.  X
)  ->  ( M  e.  ( Met `  X
)  ->  ( ( F `  u ) M ( F `  v ) )  <_ 
( ( ( F `
 w ) M ( F `  u
) )  +  ( ( F `  w
) M ( F `
 v ) ) ) ) )
5150impcom 431 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  (
( ( F `  u )  e.  X  /\  ( F `  v
)  e.  X )  /\  ( F `  w )  e.  X
) )  ->  (
( F `  u
) M ( F `
 v ) )  <_  ( ( ( F `  w ) M ( F `  u ) )  +  ( ( F `  w ) M ( F `  v ) ) ) )
5251adantlr 719 . . . . . . . . . 10  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( (
( F `  u
)  e.  X  /\  ( F `  v )  e.  X )  /\  ( F `  w )  e.  X ) )  ->  ( ( F `
 u ) M ( F `  v
) )  <_  (
( ( F `  w ) M ( F `  u ) )  +  ( ( F `  w ) M ( F `  v ) ) ) )
5346, 52syldan 472 . . . . . . . . 9  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( (
u  e.  Y  /\  v  e.  Y )  /\  w  e.  Y
) )  ->  (
( F `  u
) M ( F `
 v ) )  <_  ( ( ( F `  w ) M ( F `  u ) )  +  ( ( F `  w ) M ( F `  v ) ) ) )
5453anassrs 652 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  F : Y
-1-1-onto-> X )  /\  (
u  e.  Y  /\  v  e.  Y )
)  /\  w  e.  Y )  ->  (
( F `  u
) M ( F `
 v ) )  <_  ( ( ( F `  w ) M ( F `  u ) )  +  ( ( F `  w ) M ( F `  v ) ) ) )
5521adantr 466 . . . . . . . . . 10  |-  ( ( ( u  e.  Y  /\  v  e.  Y
)  /\  w  e.  Y )  ->  (
u N v )  =  ( ( F `
 u ) M ( F `  v
) ) )
56 fveq2 5881 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  ( F `  x )  =  ( F `  w ) )
5756oveq1d 6320 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  (
( F `  x
) M ( F `
 y ) )  =  ( ( F `
 w ) M ( F `  y
) ) )
58 fveq2 5881 . . . . . . . . . . . . . . 15  |-  ( y  =  u  ->  ( F `  y )  =  ( F `  u ) )
5958oveq2d 6321 . . . . . . . . . . . . . 14  |-  ( y  =  u  ->  (
( F `  w
) M ( F `
 y ) )  =  ( ( F `
 w ) M ( F `  u
) ) )
60 ovex 6333 . . . . . . . . . . . . . 14  |-  ( ( F `  w ) M ( F `  u ) )  e. 
_V
6157, 59, 13, 60ovmpt2 6446 . . . . . . . . . . . . 13  |-  ( ( w  e.  Y  /\  u  e.  Y )  ->  ( w N u )  =  ( ( F `  w ) M ( F `  u ) ) )
6261ancoms 454 . . . . . . . . . . . 12  |-  ( ( u  e.  Y  /\  w  e.  Y )  ->  ( w N u )  =  ( ( F `  w ) M ( F `  u ) ) )
6362adantlr 719 . . . . . . . . . . 11  |-  ( ( ( u  e.  Y  /\  v  e.  Y
)  /\  w  e.  Y )  ->  (
w N u )  =  ( ( F `
 w ) M ( F `  u
) ) )
6418oveq2d 6321 . . . . . . . . . . . . . 14  |-  ( y  =  v  ->  (
( F `  w
) M ( F `
 y ) )  =  ( ( F `
 w ) M ( F `  v
) ) )
65 ovex 6333 . . . . . . . . . . . . . 14  |-  ( ( F `  w ) M ( F `  v ) )  e. 
_V
6657, 64, 13, 65ovmpt2 6446 . . . . . . . . . . . . 13  |-  ( ( w  e.  Y  /\  v  e.  Y )  ->  ( w N v )  =  ( ( F `  w ) M ( F `  v ) ) )
6766ancoms 454 . . . . . . . . . . . 12  |-  ( ( v  e.  Y  /\  w  e.  Y )  ->  ( w N v )  =  ( ( F `  w ) M ( F `  v ) ) )
6867adantll 718 . . . . . . . . . . 11  |-  ( ( ( u  e.  Y  /\  v  e.  Y
)  /\  w  e.  Y )  ->  (
w N v )  =  ( ( F `
 w ) M ( F `  v
) ) )
6963, 68oveq12d 6323 . . . . . . . . . 10  |-  ( ( ( u  e.  Y  /\  v  e.  Y
)  /\  w  e.  Y )  ->  (
( w N u )  +  ( w N v ) )  =  ( ( ( F `  w ) M ( F `  u ) )  +  ( ( F `  w ) M ( F `  v ) ) ) )
7055, 69breq12d 4439 . . . . . . . . 9  |-  ( ( ( u  e.  Y  /\  v  e.  Y
)  /\  w  e.  Y )  ->  (
( u N v )  <_  ( (
w N u )  +  ( w N v ) )  <->  ( ( F `  u ) M ( F `  v ) )  <_ 
( ( ( F `
 w ) M ( F `  u
) )  +  ( ( F `  w
) M ( F `
 v ) ) ) ) )
7170adantll 718 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  F : Y
-1-1-onto-> X )  /\  (
u  e.  Y  /\  v  e.  Y )
)  /\  w  e.  Y )  ->  (
( u N v )  <_  ( (
w N u )  +  ( w N v ) )  <->  ( ( F `  u ) M ( F `  v ) )  <_ 
( ( ( F `
 w ) M ( F `  u
) )  +  ( ( F `  w
) M ( F `
 v ) ) ) ) )
7254, 71mpbird 235 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  F : Y
-1-1-onto-> X )  /\  (
u  e.  Y  /\  v  e.  Y )
)  /\  w  e.  Y )  ->  (
u N v )  <_  ( ( w N u )  +  ( w N v ) ) )
7372ralrimiva 2846 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( u  e.  Y  /\  v  e.  Y ) )  ->  A. w  e.  Y  ( u N v )  <_  ( (
w N u )  +  ( w N v ) ) )
7440, 73jca 534 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( u  e.  Y  /\  v  e.  Y ) )  -> 
( ( ( u N v )  =  0  <->  u  =  v
)  /\  A. w  e.  Y  ( u N v )  <_ 
( ( w N u )  +  ( w N v ) ) ) )
75743adantl1 1161 . . . 4  |-  ( ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  /\  (
u  e.  Y  /\  v  e.  Y )
)  ->  ( (
( u N v )  =  0  <->  u  =  v )  /\  A. w  e.  Y  ( u N v )  <_  ( ( w N u )  +  ( w N v ) ) ) )
7675ex 435 . . 3  |-  ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  (
( u  e.  Y  /\  v  e.  Y
)  ->  ( (
( u N v )  =  0  <->  u  =  v )  /\  A. w  e.  Y  ( u N v )  <_  ( ( w N u )  +  ( w N v ) ) ) ) )
7776ralrimivv 2852 . 2  |-  ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  A. u  e.  Y  A. v  e.  Y  ( (
( u N v )  =  0  <->  u  =  v )  /\  A. w  e.  Y  ( u N v )  <_  ( ( w N u )  +  ( w N v ) ) ) )
78 ismet 21269 . . 3  |-  ( Y  e.  A  ->  ( N  e.  ( Met `  Y )  <->  ( N : ( Y  X.  Y ) --> RR  /\  A. u  e.  Y  A. v  e.  Y  (
( ( u N v )  =  0  <-> 
u  =  v )  /\  A. w  e.  Y  ( u N v )  <_  (
( w N u )  +  ( w N v ) ) ) ) ) )
79783ad2ant1 1026 . 2  |-  ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  ( N  e.  ( Met `  Y )  <->  ( N : ( Y  X.  Y ) --> RR  /\  A. u  e.  Y  A. v  e.  Y  (
( ( u N v )  =  0  <-> 
u  =  v )  /\  A. w  e.  Y  ( u N v )  <_  (
( w N u )  +  ( w N v ) ) ) ) ) )
8015, 77, 79mpbir2and 930 1  |-  ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  N  e.  ( Met `  Y
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   A.wral 2782   class class class wbr 4426    X. cxp 4852   -->wf 5597   -1-1->wf1 5598   -1-1-onto->wf1o 5600   ` cfv 5601  (class class class)co 6305    |-> cmpt2 6307   RRcr 9537   0cc0 9538    + caddc 9541    <_ cle 9675   Metcme 18891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-mulcl 9600  ax-i2m1 9606
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-xadd 11410  df-xmet 18898  df-met 18899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator