Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  metequiv2 Structured version   Unicode version

Theorem metequiv2 20216
 Description: If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3
metequiv.4
Assertion
Ref Expression
metequiv2
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,   ,,,

Proof of Theorem metequiv2
StepHypRef Expression
1 simprrr 764 . . . . . . . . . . 11
2 simplll 757 . . . . . . . . . . . 12
3 simplr 754 . . . . . . . . . . . 12
4 simprlr 762 . . . . . . . . . . . . 13
54rpxrd 11138 . . . . . . . . . . . 12
6 simprll 761 . . . . . . . . . . . . 13
76rpxrd 11138 . . . . . . . . . . . 12
8 simprrl 763 . . . . . . . . . . . 12
9 ssbl 20129 . . . . . . . . . . . 12
102, 3, 5, 7, 8, 9syl221anc 1230 . . . . . . . . . . 11
111, 10eqsstr3d 3498 . . . . . . . . . 10
12 simpllr 758 . . . . . . . . . . . 12
13 ssbl 20129 . . . . . . . . . . . 12
1412, 3, 5, 7, 8, 13syl221anc 1230 . . . . . . . . . . 11
151, 14eqsstrd 3497 . . . . . . . . . 10
1611, 15jca 532 . . . . . . . . 9
1716expr 615 . . . . . . . 8
1817anassrs 648 . . . . . . 7
1918reximdva 2932 . . . . . 6
20 r19.40 2975 . . . . . 6
2119, 20syl6 33 . . . . 5
2221ralimdva 2831 . . . 4
23 r19.26 2953 . . . 4
2422, 23syl6ib 226 . . 3
2524ralimdva 2831 . 2
26 metequiv.3 . . 3
27 metequiv.4 . . 3
2826, 27metequiv 20215 . 2
2925, 28sylibrd 234 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369   wceq 1370   wcel 1758  wral 2798  wrex 2799   wss 3435   class class class wbr 4399  cfv 5525  (class class class)co 6199  cxr 9527   cle 9529  crp 11101  cxmt 17925  cbl 17927  cmopn 17930 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-1st 6686  df-2nd 6687  df-recs 6941  df-rdg 6975  df-er 7210  df-map 7325  df-en 7420  df-dom 7421  df-sdom 7422  df-sup 7801  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-n0 10690  df-z 10757  df-uz 10972  df-q 11064  df-rp 11102  df-xneg 11199  df-xadd 11200  df-xmul 11201  df-topgen 14500  df-psmet 17933  df-xmet 17934  df-bl 17936  df-mopn 17937  df-bases 18636 This theorem is referenced by:  stdbdmopn  20224
 Copyright terms: Public domain W3C validator