MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metequiv2 Structured version   Unicode version

Theorem metequiv2 20216
Description: If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3  |-  J  =  ( MetOpen `  C )
metequiv.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metequiv2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  J  =  K ) )
Distinct variable groups:    s, r, x, C    J, r, s, x    K, r, s, x    D, r, s, x    X, r, s, x

Proof of Theorem metequiv2
StepHypRef Expression
1 simprrr 764 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
x ( ball `  C
) s )  =  ( x ( ball `  D ) s ) )
2 simplll 757 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  C  e.  ( *Met `  X ) )
3 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  x  e.  X )
4 simprlr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  s  e.  RR+ )
54rpxrd 11138 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  s  e.  RR* )
6 simprll 761 . . . . . . . . . . . . 13  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  r  e.  RR+ )
76rpxrd 11138 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  r  e.  RR* )
8 simprrl 763 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  s  <_  r )
9 ssbl 20129 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( *Met `  X
)  /\  x  e.  X )  /\  (
s  e.  RR*  /\  r  e.  RR* )  /\  s  <_  r )  ->  (
x ( ball `  C
) s )  C_  ( x ( ball `  C ) r ) )
102, 3, 5, 7, 8, 9syl221anc 1230 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
x ( ball `  C
) s )  C_  ( x ( ball `  C ) r ) )
111, 10eqsstr3d 3498 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r ) )
12 simpllr 758 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  D  e.  ( *Met `  X ) )
13 ssbl 20129 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  X )  /\  (
s  e.  RR*  /\  r  e.  RR* )  /\  s  <_  r )  ->  (
x ( ball `  D
) s )  C_  ( x ( ball `  D ) r ) )
1412, 3, 5, 7, 8, 13syl221anc 1230 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
x ( ball `  D
) s )  C_  ( x ( ball `  D ) r ) )
151, 14eqsstrd 3497 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) )
1611, 15jca 532 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( ( r  e.  RR+  /\  s  e.  RR+ )  /\  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) ) ) )  ->  (
( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  (
x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) ) )
1716expr 615 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  ( r  e.  RR+  /\  s  e.  RR+ )
)  ->  ( (
s  <_  r  /\  ( x ( ball `  C ) s )  =  ( x (
ball `  D )
s ) )  -> 
( ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  /\  ( x ( ball `  C ) s ) 
C_  ( x (
ball `  D )
r ) ) ) )
1817anassrs 648 . . . . . . 7  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  r  e.  RR+ )  /\  s  e.  RR+ )  ->  ( ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  ( ( x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  ( x (
ball `  C )
s )  C_  (
x ( ball `  D
) r ) ) ) )
1918reximdva 2932 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  r  e.  RR+ )  ->  ( E. s  e.  RR+  ( s  <_  r  /\  ( x ( ball `  C ) s )  =  ( x (
ball `  D )
s ) )  ->  E. s  e.  RR+  (
( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  (
x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) ) ) )
20 r19.40 2975 . . . . . 6  |-  ( E. s  e.  RR+  (
( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  (
x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) )  ->  ( E. s  e.  RR+  ( x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  E. s  e.  RR+  ( x ( ball `  C ) s ) 
C_  ( x (
ball `  D )
r ) ) )
2119, 20syl6 33 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  /\  x  e.  X )  /\  r  e.  RR+ )  ->  ( E. s  e.  RR+  ( s  <_  r  /\  ( x ( ball `  C ) s )  =  ( x (
ball `  D )
s ) )  -> 
( E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  E. s  e.  RR+  ( x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) ) ) )
2221ralimdva 2831 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  A. r  e.  RR+  ( E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  E. s  e.  RR+  ( x ( ball `  C
) s )  C_  ( x ( ball `  D ) r ) ) ) )
23 r19.26 2953 . . . 4  |-  ( A. r  e.  RR+  ( E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  E. s  e.  RR+  ( x ( ball `  C ) s ) 
C_  ( x (
ball `  D )
r ) )  <->  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  /\  A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  C )
s )  C_  (
x ( ball `  D
) r ) ) )
2422, 23syl6ib 226 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  X
) )  /\  x  e.  X )  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  ( A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  /\  A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  C )
s )  C_  (
x ( ball `  D
) r ) ) ) )
2524ralimdva 2831 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  A. x  e.  X  ( A. r  e.  RR+  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r )  /\  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  C ) s ) 
C_  ( x (
ball `  D )
r ) ) ) )
26 metequiv.3 . . 3  |-  J  =  ( MetOpen `  C )
27 metequiv.4 . . 3  |-  K  =  ( MetOpen `  D )
2826, 27metequiv 20215 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( J  =  K  <->  A. x  e.  X  ( A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r )  /\  A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  C )
s )  C_  (
x ( ball `  D
) r ) ) ) )
2925, 28sylibrd 234 1  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( x
( ball `  C )
s )  =  ( x ( ball `  D
) s ) )  ->  J  =  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2798   E.wrex 2799    C_ wss 3435   class class class wbr 4399   ` cfv 5525  (class class class)co 6199   RR*cxr 9527    <_ cle 9529   RR+crp 11101   *Metcxmt 17925   ballcbl 17927   MetOpencmopn 17930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-1st 6686  df-2nd 6687  df-recs 6941  df-rdg 6975  df-er 7210  df-map 7325  df-en 7420  df-dom 7421  df-sdom 7422  df-sup 7801  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-n0 10690  df-z 10757  df-uz 10972  df-q 11064  df-rp 11102  df-xneg 11199  df-xadd 11200  df-xmul 11201  df-topgen 14500  df-psmet 17933  df-xmet 17934  df-bl 17936  df-mopn 17937  df-bases 18636
This theorem is referenced by:  stdbdmopn  20224
  Copyright terms: Public domain W3C validator