MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsge Structured version   Unicode version

Theorem metdsge 20423
Description: The distance from the point  A to the set  S is greater than  R iff the  R-ball around  A misses  S. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f  |-  F  =  ( x  e.  X  |->  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
Assertion
Ref Expression
metdsge  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ( R  <_  ( F `  A
)  <->  ( S  i^i  ( A ( ball `  D
) R ) )  =  (/) ) )
Distinct variable groups:    x, y, A    x, D, y    x, S, y    x, X, y
Allowed substitution hints:    R( x, y)    F( x, y)

Proof of Theorem metdsge
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 993 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  A  e.  X )
2 metdscn.f . . . . 5  |-  F  =  ( x  e.  X  |->  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
32metdsval 20421 . . . 4  |-  ( A  e.  X  ->  ( F `  A )  =  sup ( ran  (
y  e.  S  |->  ( A D y ) ) ,  RR* ,  `'  <  ) )
41, 3syl 16 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ( F `  A )  =  sup ( ran  ( y  e.  S  |->  ( A D y ) ) , 
RR* ,  `'  <  ) )
54breq2d 4302 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ( R  <_  ( F `  A
)  <->  R  <_  sup ( ran  ( y  e.  S  |->  ( A D y ) ) ,  RR* ,  `'  <  ) ) )
6 simpll1 1027 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  D  e.  ( *Met `  X ) )
71adantr 465 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  A  e.  X )
8 simpl2 992 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  S  C_  X
)
98sselda 3354 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  w  e.  X )
10 xmetcl 19904 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  w  e.  X
)  ->  ( A D w )  e. 
RR* )
116, 7, 9, 10syl3anc 1218 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  ( A D w )  e. 
RR* )
12 oveq2 6097 . . . . . 6  |-  ( y  =  w  ->  ( A D y )  =  ( A D w ) )
1312cbvmptv 4381 . . . . 5  |-  ( y  e.  S  |->  ( A D y ) )  =  ( w  e.  S  |->  ( A D w ) )
1411, 13fmptd 5865 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ( y  e.  S  |->  ( A D y ) ) : S --> RR* )
15 frn 5563 . . . 4  |-  ( ( y  e.  S  |->  ( A D y ) ) : S --> RR*  ->  ran  ( y  e.  S  |->  ( A D y ) )  C_  RR* )
1614, 15syl 16 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ran  ( y  e.  S  |->  ( A D y ) ) 
C_  RR* )
17 simpr 461 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  R  e.  RR* )
18 infmxrgelb 11295 . . 3  |-  ( ( ran  ( y  e.  S  |->  ( A D y ) )  C_  RR* 
/\  R  e.  RR* )  ->  ( R  <_  sup ( ran  ( y  e.  S  |->  ( A D y ) ) ,  RR* ,  `'  <  )  <->  A. z  e.  ran  ( y  e.  S  |->  ( A D y ) ) R  <_ 
z ) )
1916, 17, 18syl2anc 661 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ( R  <_  sup ( ran  (
y  e.  S  |->  ( A D y ) ) ,  RR* ,  `'  <  )  <->  A. z  e.  ran  ( y  e.  S  |->  ( A D y ) ) R  <_ 
z ) )
2017adantr 465 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  R  e.  RR* )
21 elbl2 19963 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( A  e.  X  /\  w  e.  X ) )  -> 
( w  e.  ( A ( ball `  D
) R )  <->  ( A D w )  < 
R ) )
226, 20, 7, 9, 21syl22anc 1219 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  (
w  e.  ( A ( ball `  D
) R )  <->  ( A D w )  < 
R ) )
23 xrltnle 9441 . . . . . . 7  |-  ( ( ( A D w )  e.  RR*  /\  R  e.  RR* )  ->  (
( A D w )  <  R  <->  -.  R  <_  ( A D w ) ) )
2411, 20, 23syl2anc 661 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  (
( A D w )  <  R  <->  -.  R  <_  ( A D w ) ) )
2522, 24bitrd 253 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  (
w  e.  ( A ( ball `  D
) R )  <->  -.  R  <_  ( A D w ) ) )
2625con2bid 329 . . . 4  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  ( R  <_  ( A D w )  <->  -.  w  e.  ( A ( ball `  D ) R ) ) )
2726ralbidva 2729 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ( A. w  e.  S  R  <_  ( A D w )  <->  A. w  e.  S  -.  w  e.  ( A ( ball `  D
) R ) ) )
28 ovex 6114 . . . . 5  |-  ( A D w )  e. 
_V
2928rgenw 2781 . . . 4  |-  A. w  e.  S  ( A D w )  e. 
_V
30 breq2 4294 . . . . 5  |-  ( z  =  ( A D w )  ->  ( R  <_  z  <->  R  <_  ( A D w ) ) )
3113, 30ralrnmpt 5850 . . . 4  |-  ( A. w  e.  S  ( A D w )  e. 
_V  ->  ( A. z  e.  ran  ( y  e.  S  |->  ( A D y ) ) R  <_  z  <->  A. w  e.  S  R  <_  ( A D w ) ) )
3229, 31ax-mp 5 . . 3  |-  ( A. z  e.  ran  ( y  e.  S  |->  ( A D y ) ) R  <_  z  <->  A. w  e.  S  R  <_  ( A D w ) )
33 disj 3717 . . 3  |-  ( ( S  i^i  ( A ( ball `  D
) R ) )  =  (/)  <->  A. w  e.  S  -.  w  e.  ( A ( ball `  D
) R ) )
3427, 32, 333bitr4g 288 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ( A. z  e.  ran  ( y  e.  S  |->  ( A D y ) ) R  <_  z  <->  ( S  i^i  ( A ( ball `  D ) R ) )  =  (/) ) )
355, 19, 343bitrd 279 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ( R  <_  ( F `  A
)  <->  ( S  i^i  ( A ( ball `  D
) R ) )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2713   _Vcvv 2970    i^i cin 3325    C_ wss 3326   (/)c0 3635   class class class wbr 4290    e. cmpt 4348   `'ccnv 4837   ran crn 4839   -->wf 5412   ` cfv 5416  (class class class)co 6089   supcsup 7688   RR*cxr 9415    < clt 9416    <_ cle 9417   *Metcxmt 17799   ballcbl 17801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-pre-sup 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-po 4639  df-so 4640  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-1st 6575  df-2nd 6576  df-er 7099  df-map 7214  df-en 7309  df-dom 7310  df-sdom 7311  df-sup 7689  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-psmet 17807  df-xmet 17808  df-bl 17810
This theorem is referenced by:  metds0  20424  metdstri  20425  metdseq0  20428  lebnumlem3  20533
  Copyright terms: Public domain W3C validator