MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdseq0OLD Structured version   Unicode version

Theorem metdseq0OLD 21884
Description: The distance from a point to a set is zero iff the point is in the closure set. (Contributed by Mario Carneiro, 14-Feb-2015.) Obsolete version of metdseq0 21869 as of 30-Sep-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
metdscnOLD.f  |-  F  =  ( x  e.  X  |->  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
metdscnOLD.j  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
metdseq0OLD  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( ( F `  A )  =  0  <->  A  e.  ( ( cls `  J
) `  S )
) )
Distinct variable groups:    x, y, A    x, D, y    y, J    x, S, y    x, X, y
Allowed substitution hints:    F( x, y)    J( x)

Proof of Theorem metdseq0OLD
Dummy variables  r 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1044 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  ->  D  e.  ( *Met `  X ) )
2 simprl 762 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  ->  z  e.  J )
3 simprr 764 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  ->  A  e.  z )
4 metdscnOLD.j . . . . . . . 8  |-  J  =  ( MetOpen `  D )
54mopni2 21506 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  J  /\  A  e.  z
)  ->  E. r  e.  RR+  ( A (
ball `  D )
r )  C_  z
)
61, 2, 3, 5syl3anc 1264 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  ->  E. r  e.  RR+  ( A (
ball `  D )
r )  C_  z
)
7 simprr 764 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( A ( ball `  D ) r ) 
C_  z )
8 ssrin 3687 . . . . . . . 8  |-  ( ( A ( ball `  D
) r )  C_  z  ->  ( ( A ( ball `  D
) r )  i^i 
S )  C_  (
z  i^i  S )
)
97, 8syl 17 . . . . . . 7  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( ( A (
ball `  D )
r )  i^i  S
)  C_  ( z  i^i  S ) )
10 rpgt0 11320 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  0  < 
r )
11 0re 9650 . . . . . . . . . . 11  |-  0  e.  RR
12 rpre 11315 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  r  e.  RR )
13 ltnle 9720 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  r  e.  RR )  ->  ( 0  <  r  <->  -.  r  <_  0 ) )
1411, 12, 13sylancr 667 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  ( 0  <  r  <->  -.  r  <_  0 ) )
1510, 14mpbid 213 . . . . . . . . 9  |-  ( r  e.  RR+  ->  -.  r  <_  0 )
1615ad2antrl 732 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  ->  -.  r  <_  0 )
17 simpllr 767 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( F `  A
)  =  0 )
1817breq2d 4435 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( r  <_  ( F `  A )  <->  r  <_  0 ) )
191adantr 466 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  ->  D  e.  ( *Met `  X ) )
20 simpl2 1009 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  S  C_  X
)
2120ad2antrr 730 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  ->  S  C_  X )
22 simpl3 1010 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  A  e.  X )
2322ad2antrr 730 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  ->  A  e.  X )
24 rpxr 11316 . . . . . . . . . . . . 13  |-  ( r  e.  RR+  ->  r  e. 
RR* )
2524ad2antrl 732 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
r  e.  RR* )
26 metdscnOLD.f . . . . . . . . . . . . 13  |-  F  =  ( x  e.  X  |->  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
2726metdsgeOLD 21879 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  r  e.  RR* )  ->  ( r  <_  ( F `  A
)  <->  ( S  i^i  ( A ( ball `  D
) r ) )  =  (/) ) )
2819, 21, 23, 25, 27syl31anc 1267 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( r  <_  ( F `  A )  <->  ( S  i^i  ( A ( ball `  D
) r ) )  =  (/) ) )
2918, 28bitr3d 258 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( r  <_  0  <->  ( S  i^i  ( A ( ball `  D
) r ) )  =  (/) ) )
30 incom 3655 . . . . . . . . . . 11  |-  ( S  i^i  ( A (
ball `  D )
r ) )  =  ( ( A (
ball `  D )
r )  i^i  S
)
3130eqeq1i 2429 . . . . . . . . . 10  |-  ( ( S  i^i  ( A ( ball `  D
) r ) )  =  (/)  <->  ( ( A ( ball `  D
) r )  i^i 
S )  =  (/) )
3229, 31syl6bb 264 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( r  <_  0  <->  ( ( A ( ball `  D ) r )  i^i  S )  =  (/) ) )
3332necon3bbid 2667 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( -.  r  <_ 
0  <->  ( ( A ( ball `  D
) r )  i^i 
S )  =/=  (/) ) )
3416, 33mpbid 213 . . . . . . 7  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( ( A (
ball `  D )
r )  i^i  S
)  =/=  (/) )
35 ssn0 3797 . . . . . . 7  |-  ( ( ( ( A (
ball `  D )
r )  i^i  S
)  C_  ( z  i^i  S )  /\  (
( A ( ball `  D ) r )  i^i  S )  =/=  (/) )  ->  ( z  i^i  S )  =/=  (/) )
369, 34, 35syl2anc 665 . . . . . 6  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( z  i^i  S
)  =/=  (/) )
376, 36rexlimddv 2918 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  ->  (
z  i^i  S )  =/=  (/) )
3837expr 618 . . . 4  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  z  e.  J )  ->  ( A  e.  z  ->  ( z  i^i 
S )  =/=  (/) ) )
3938ralrimiva 2836 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  A. z  e.  J  ( A  e.  z  ->  ( z  i^i  S )  =/=  (/) ) )
404mopntopon 21452 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
41403ad2ant1 1026 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  J  e.  (TopOn `  X ) )
4241adantr 466 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  J  e.  (TopOn `  X ) )
43 topontop 19939 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
4442, 43syl 17 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  J  e.  Top )
45 toponuni 19940 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
4642, 45syl 17 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  X  =  U. J )
4720, 46sseqtrd 3500 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  S  C_  U. J
)
4822, 46eleqtrd 2509 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  A  e.  U. J )
49 eqid 2422 . . . . 5  |-  U. J  =  U. J
5049elcls 20087 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  U. J  /\  A  e.  U. J )  ->  ( A  e.  ( ( cls `  J
) `  S )  <->  A. z  e.  J  ( A  e.  z  -> 
( z  i^i  S
)  =/=  (/) ) ) )
5144, 47, 48, 50syl3anc 1264 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  ( A  e.  ( ( cls `  J
) `  S )  <->  A. z  e.  J  ( A  e.  z  -> 
( z  i^i  S
)  =/=  (/) ) ) )
5239, 51mpbird 235 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  A  e.  ( ( cls `  J
) `  S )
)
53 incom 3655 . . . . . . 7  |-  ( ( A ( ball `  D
) ( F `  A ) )  i^i 
S )  =  ( S  i^i  ( A ( ball `  D
) ( F `  A ) ) )
5426metdsfOLD 21878 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  F : X
--> ( 0 [,] +oo ) )
5554ffvelrnda 6037 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X
)  /\  A  e.  X )  ->  ( F `  A )  e.  ( 0 [,] +oo ) )
56553impa 1200 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( F `  A )  e.  ( 0 [,] +oo )
)
57 elxrge0 11748 . . . . . . . . . . 11  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  <->  ( ( F `
 A )  e. 
RR*  /\  0  <_  ( F `  A ) ) )
5857simplbi 461 . . . . . . . . . 10  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  ->  ( F `
 A )  e. 
RR* )
5956, 58syl 17 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( F `  A )  e.  RR* )
60 xrleid 11456 . . . . . . . . 9  |-  ( ( F `  A )  e.  RR*  ->  ( F `
 A )  <_ 
( F `  A
) )
6159, 60syl 17 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( F `  A )  <_  ( F `  A )
)
6226metdsgeOLD 21879 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  e.  RR* )  ->  ( ( F `
 A )  <_ 
( F `  A
)  <->  ( S  i^i  ( A ( ball `  D
) ( F `  A ) ) )  =  (/) ) )
6359, 62mpdan 672 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( ( F `  A )  <_  ( F `  A
)  <->  ( S  i^i  ( A ( ball `  D
) ( F `  A ) ) )  =  (/) ) )
6461, 63mpbid 213 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( S  i^i  ( A ( ball `  D ) ( F `
 A ) ) )  =  (/) )
6553, 64syl5eq 2475 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( ( A ( ball `  D
) ( F `  A ) )  i^i 
S )  =  (/) )
6665adantr 466 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( A ( ball `  D
) ( F `  A ) )  i^i 
S )  =  (/) )
6741ad2antrr 730 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  J  e.  (TopOn `  X ) )
6867, 43syl 17 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  J  e.  Top )
69 simpll2 1045 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  S  C_  X
)
7067, 45syl 17 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  X  =  U. J )
7169, 70sseqtrd 3500 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  S  C_  U. J
)
72 simplr 760 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  A  e.  ( ( cls `  J
) `  S )
)
73 simpll1 1044 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  D  e.  ( *Met `  X
) )
74 simpll3 1046 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  A  e.  X )
7559ad2antrr 730 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  ( F `  A )  e.  RR* )
764blopn 21513 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  ( F `  A
)  e.  RR* )  ->  ( A ( ball `  D ) ( F `
 A ) )  e.  J )
7773, 74, 75, 76syl3anc 1264 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  ( A
( ball `  D )
( F `  A
) )  e.  J
)
78 simpr 462 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  0  <  ( F `  A ) )
79 xblcntr 21424 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  ( ( F `  A )  e.  RR*  /\  0  <  ( F `
 A ) ) )  ->  A  e.  ( A ( ball `  D
) ( F `  A ) ) )
8073, 74, 75, 78, 79syl112anc 1268 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  A  e.  ( A ( ball `  D
) ( F `  A ) ) )
8149clsndisj 20089 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  U. J  /\  A  e.  ( ( cls `  J ) `  S ) )  /\  ( ( A (
ball `  D )
( F `  A
) )  e.  J  /\  A  e.  ( A ( ball `  D
) ( F `  A ) ) ) )  ->  ( ( A ( ball `  D
) ( F `  A ) )  i^i 
S )  =/=  (/) )
8268, 71, 72, 77, 80, 81syl32anc 1272 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  ( ( A ( ball `  D
) ( F `  A ) )  i^i 
S )  =/=  (/) )
8382ex 435 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( 0  <  ( F `  A )  ->  (
( A ( ball `  D ) ( F `
 A ) )  i^i  S )  =/=  (/) ) )
8483necon2bd 2635 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( (
( A ( ball `  D ) ( F `
 A ) )  i^i  S )  =  (/)  ->  -.  0  <  ( F `  A ) ) )
8566, 84mpd 15 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  -.  0  <  ( F `  A
) )
8657simprbi 465 . . . . . . . 8  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  ->  0  <_ 
( F `  A
) )
8756, 86syl 17 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  0  <_  ( F `  A ) )
88 0xr 9694 . . . . . . . 8  |-  0  e.  RR*
89 xrleloe 11450 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  ( F `  A )  e.  RR* )  ->  (
0  <_  ( F `  A )  <->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) ) )
9088, 59, 89sylancr 667 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( 0  <_  ( F `  A )  <->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) ) )
9187, 90mpbid 213 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) )
9291adantr 466 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) )
9392ord 378 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( -.  0  <  ( F `  A )  ->  0  =  ( F `  A ) ) )
9485, 93mpd 15 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  0  =  ( F `  A ) )
9594eqcomd 2430 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( F `  A )  =  0 )
9652, 95impbida 840 1  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( ( F `  A )  =  0  <->  A  e.  ( ( cls `  J
) `  S )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2614   A.wral 2771   E.wrex 2772    i^i cin 3435    C_ wss 3436   (/)c0 3761   U.cuni 4219   class class class wbr 4423    |-> cmpt 4482   `'ccnv 4852   ran crn 4854   ` cfv 5601  (class class class)co 6305   supcsup 7963   RRcr 9545   0cc0 9546   +oocpnf 9679   RR*cxr 9681    < clt 9682    <_ cle 9683   RR+crp 11309   [,]cicc 11645   *Metcxmt 18954   ballcbl 18956   MetOpencmopn 18959   Topctop 19915  TopOnctopon 19916   clsccl 20031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623  ax-pre-sup 9624
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-er 7374  df-map 7485  df-en 7581  df-dom 7582  df-sdom 7583  df-sup 7965  df-inf 7966  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-div 10277  df-nn 10617  df-2 10675  df-n0 10877  df-z 10945  df-uz 11167  df-q 11272  df-rp 11310  df-xneg 11416  df-xadd 11417  df-xmul 11418  df-icc 11649  df-topgen 15341  df-psmet 18961  df-xmet 18962  df-bl 18964  df-mopn 18965  df-top 19919  df-bases 19920  df-topon 19921  df-cld 20032  df-ntr 20033  df-cls 20034
This theorem is referenced by:  metnrmlem1aOLD  21888  lebnumlem1OLD  21990
  Copyright terms: Public domain W3C validator