MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdcnlem Structured version   Unicode version

Theorem metdcnlem 21846
Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xmetdcn2.1  |-  J  =  ( MetOpen `  D )
xmetdcn2.2  |-  C  =  ( dist `  RR*s
)
xmetdcn2.3  |-  K  =  ( MetOpen `  C )
metdcn.d  |-  ( ph  ->  D  e.  ( *Met `  X ) )
metdcn.a  |-  ( ph  ->  A  e.  X )
metdcn.b  |-  ( ph  ->  B  e.  X )
metdcn.r  |-  ( ph  ->  R  e.  RR+ )
metdcn.y  |-  ( ph  ->  Y  e.  X )
metdcn.z  |-  ( ph  ->  Z  e.  X )
metdcn.4  |-  ( ph  ->  ( A D Y )  <  ( R  /  2 ) )
metdcn.5  |-  ( ph  ->  ( B D Z )  <  ( R  /  2 ) )
Assertion
Ref Expression
metdcnlem  |-  ( ph  ->  ( ( A D B ) C ( Y D Z ) )  <  R )

Proof of Theorem metdcnlem
StepHypRef Expression
1 xmetdcn2.2 . . . . 5  |-  C  =  ( dist `  RR*s
)
21xrsxmet 21819 . . . 4  |-  C  e.  ( *Met `  RR* )
32a1i 11 . . 3  |-  ( ph  ->  C  e.  ( *Met `  RR* )
)
4 metdcn.d . . . 4  |-  ( ph  ->  D  e.  ( *Met `  X ) )
5 metdcn.a . . . 4  |-  ( ph  ->  A  e.  X )
6 metdcn.b . . . 4  |-  ( ph  ->  B  e.  X )
7 xmetcl 21338 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  e.  RR* )
84, 5, 6, 7syl3anc 1265 . . 3  |-  ( ph  ->  ( A D B )  e.  RR* )
9 metdcn.y . . . 4  |-  ( ph  ->  Y  e.  X )
10 metdcn.z . . . 4  |-  ( ph  ->  Z  e.  X )
11 xmetcl 21338 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  Y  e.  X  /\  Z  e.  X
)  ->  ( Y D Z )  e.  RR* )
124, 9, 10, 11syl3anc 1265 . . 3  |-  ( ph  ->  ( Y D Z )  e.  RR* )
13 xmetcl 21338 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  Y  e.  X  /\  B  e.  X
)  ->  ( Y D B )  e.  RR* )
144, 9, 6, 13syl3anc 1265 . . . . 5  |-  ( ph  ->  ( Y D B )  e.  RR* )
15 metdcn.r . . . . . . 7  |-  ( ph  ->  R  e.  RR+ )
1615rphalfcld 11355 . . . . . 6  |-  ( ph  ->  ( R  /  2
)  e.  RR+ )
1716rpred 11343 . . . . 5  |-  ( ph  ->  ( R  /  2
)  e.  RR )
18 xmetcl 21338 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  RR* )  /\  ( A D B )  e.  RR*  /\  ( Y D B )  e. 
RR* )  ->  (
( A D B ) C ( Y D B ) )  e.  RR* )
193, 8, 14, 18syl3anc 1265 . . . . . . 7  |-  ( ph  ->  ( ( A D B ) C ( Y D B ) )  e.  RR* )
20 xmetcl 21338 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  Y  e.  X
)  ->  ( A D Y )  e.  RR* )
214, 5, 9, 20syl3anc 1265 . . . . . . 7  |-  ( ph  ->  ( A D Y )  e.  RR* )
2216rpxrd 11344 . . . . . . 7  |-  ( ph  ->  ( R  /  2
)  e.  RR* )
231xmetrtri2 21363 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  Y  e.  X  /\  B  e.  X ) )  -> 
( ( A D B ) C ( Y D B ) )  <_  ( A D Y ) )
244, 5, 9, 6, 23syl13anc 1267 . . . . . . 7  |-  ( ph  ->  ( ( A D B ) C ( Y D B ) )  <_  ( A D Y ) )
25 metdcn.4 . . . . . . 7  |-  ( ph  ->  ( A D Y )  <  ( R  /  2 ) )
2619, 21, 22, 24, 25xrlelttrd 11459 . . . . . 6  |-  ( ph  ->  ( ( A D B ) C ( Y D B ) )  <  ( R  /  2 ) )
27 xrltle 11450 . . . . . . 7  |-  ( ( ( ( A D B ) C ( Y D B ) )  e.  RR*  /\  ( R  /  2 )  e. 
RR* )  ->  (
( ( A D B ) C ( Y D B ) )  <  ( R  /  2 )  -> 
( ( A D B ) C ( Y D B ) )  <_  ( R  /  2 ) ) )
2819, 22, 27syl2anc 666 . . . . . 6  |-  ( ph  ->  ( ( ( A D B ) C ( Y D B ) )  <  ( R  /  2 )  -> 
( ( A D B ) C ( Y D B ) )  <_  ( R  /  2 ) ) )
2926, 28mpd 15 . . . . 5  |-  ( ph  ->  ( ( A D B ) C ( Y D B ) )  <_  ( R  /  2 ) )
30 xmetlecl 21353 . . . . 5  |-  ( ( C  e.  ( *Met `  RR* )  /\  ( ( A D B )  e.  RR*  /\  ( Y D B )  e.  RR* )  /\  ( ( R  / 
2 )  e.  RR  /\  ( ( A D B ) C ( Y D B ) )  <_  ( R  /  2 ) ) )  ->  ( ( A D B ) C ( Y D B ) )  e.  RR )
313, 8, 14, 17, 29, 30syl122anc 1274 . . . 4  |-  ( ph  ->  ( ( A D B ) C ( Y D B ) )  e.  RR )
32 xmetcl 21338 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  RR* )  /\  ( Y D B )  e.  RR*  /\  ( Y D Z )  e. 
RR* )  ->  (
( Y D B ) C ( Y D Z ) )  e.  RR* )
333, 14, 12, 32syl3anc 1265 . . . . . . 7  |-  ( ph  ->  ( ( Y D B ) C ( Y D Z ) )  e.  RR* )
34 xmetcl 21338 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  X  /\  Z  e.  X
)  ->  ( B D Z )  e.  RR* )
354, 6, 10, 34syl3anc 1265 . . . . . . 7  |-  ( ph  ->  ( B D Z )  e.  RR* )
36 xmetsym 21354 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  Y  e.  X  /\  B  e.  X
)  ->  ( Y D B )  =  ( B D Y ) )
374, 9, 6, 36syl3anc 1265 . . . . . . . . 9  |-  ( ph  ->  ( Y D B )  =  ( B D Y ) )
38 xmetsym 21354 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  Y  e.  X  /\  Z  e.  X
)  ->  ( Y D Z )  =  ( Z D Y ) )
394, 9, 10, 38syl3anc 1265 . . . . . . . . 9  |-  ( ph  ->  ( Y D Z )  =  ( Z D Y ) )
4037, 39oveq12d 6321 . . . . . . . 8  |-  ( ph  ->  ( ( Y D B ) C ( Y D Z ) )  =  ( ( B D Y ) C ( Z D Y ) ) )
411xmetrtri2 21363 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  ( B  e.  X  /\  Z  e.  X  /\  Y  e.  X ) )  -> 
( ( B D Y ) C ( Z D Y ) )  <_  ( B D Z ) )
424, 6, 10, 9, 41syl13anc 1267 . . . . . . . 8  |-  ( ph  ->  ( ( B D Y ) C ( Z D Y ) )  <_  ( B D Z ) )
4340, 42eqbrtrd 4442 . . . . . . 7  |-  ( ph  ->  ( ( Y D B ) C ( Y D Z ) )  <_  ( B D Z ) )
44 metdcn.5 . . . . . . 7  |-  ( ph  ->  ( B D Z )  <  ( R  /  2 ) )
4533, 35, 22, 43, 44xrlelttrd 11459 . . . . . 6  |-  ( ph  ->  ( ( Y D B ) C ( Y D Z ) )  <  ( R  /  2 ) )
46 xrltle 11450 . . . . . . 7  |-  ( ( ( ( Y D B ) C ( Y D Z ) )  e.  RR*  /\  ( R  /  2 )  e. 
RR* )  ->  (
( ( Y D B ) C ( Y D Z ) )  <  ( R  /  2 )  -> 
( ( Y D B ) C ( Y D Z ) )  <_  ( R  /  2 ) ) )
4733, 22, 46syl2anc 666 . . . . . 6  |-  ( ph  ->  ( ( ( Y D B ) C ( Y D Z ) )  <  ( R  /  2 )  -> 
( ( Y D B ) C ( Y D Z ) )  <_  ( R  /  2 ) ) )
4845, 47mpd 15 . . . . 5  |-  ( ph  ->  ( ( Y D B ) C ( Y D Z ) )  <_  ( R  /  2 ) )
49 xmetlecl 21353 . . . . 5  |-  ( ( C  e.  ( *Met `  RR* )  /\  ( ( Y D B )  e.  RR*  /\  ( Y D Z )  e.  RR* )  /\  ( ( R  / 
2 )  e.  RR  /\  ( ( Y D B ) C ( Y D Z ) )  <_  ( R  /  2 ) ) )  ->  ( ( Y D B ) C ( Y D Z ) )  e.  RR )
503, 14, 12, 17, 48, 49syl122anc 1274 . . . 4  |-  ( ph  ->  ( ( Y D B ) C ( Y D Z ) )  e.  RR )
5131, 50readdcld 9672 . . 3  |-  ( ph  ->  ( ( ( A D B ) C ( Y D B ) )  +  ( ( Y D B ) C ( Y D Z ) ) )  e.  RR )
52 xmettri 21358 . . . . 5  |-  ( ( C  e.  ( *Met `  RR* )  /\  ( ( A D B )  e.  RR*  /\  ( Y D Z )  e.  RR*  /\  ( Y D B )  e. 
RR* ) )  -> 
( ( A D B ) C ( Y D Z ) )  <_  ( (
( A D B ) C ( Y D B ) ) +e ( ( Y D B ) C ( Y D Z ) ) ) )
533, 8, 12, 14, 52syl13anc 1267 . . . 4  |-  ( ph  ->  ( ( A D B ) C ( Y D Z ) )  <_  ( (
( A D B ) C ( Y D B ) ) +e ( ( Y D B ) C ( Y D Z ) ) ) )
54 rexadd 11527 . . . . 5  |-  ( ( ( ( A D B ) C ( Y D B ) )  e.  RR  /\  ( ( Y D B ) C ( Y D Z ) )  e.  RR )  ->  ( ( ( A D B ) C ( Y D B ) ) +e ( ( Y D B ) C ( Y D Z ) ) )  =  ( ( ( A D B ) C ( Y D B ) )  +  ( ( Y D B ) C ( Y D Z ) ) ) )
5531, 50, 54syl2anc 666 . . . 4  |-  ( ph  ->  ( ( ( A D B ) C ( Y D B ) ) +e
( ( Y D B ) C ( Y D Z ) ) )  =  ( ( ( A D B ) C ( Y D B ) )  +  ( ( Y D B ) C ( Y D Z ) ) ) )
5653, 55breqtrd 4446 . . 3  |-  ( ph  ->  ( ( A D B ) C ( Y D Z ) )  <_  ( (
( A D B ) C ( Y D B ) )  +  ( ( Y D B ) C ( Y D Z ) ) ) )
57 xmetlecl 21353 . . 3  |-  ( ( C  e.  ( *Met `  RR* )  /\  ( ( A D B )  e.  RR*  /\  ( Y D Z )  e.  RR* )  /\  ( ( ( ( A D B ) C ( Y D B ) )  +  ( ( Y D B ) C ( Y D Z ) ) )  e.  RR  /\  ( ( A D B ) C ( Y D Z ) )  <_  ( (
( A D B ) C ( Y D B ) )  +  ( ( Y D B ) C ( Y D Z ) ) ) ) )  ->  ( ( A D B ) C ( Y D Z ) )  e.  RR )
583, 8, 12, 51, 56, 57syl122anc 1274 . 2  |-  ( ph  ->  ( ( A D B ) C ( Y D Z ) )  e.  RR )
5915rpred 11343 . 2  |-  ( ph  ->  R  e.  RR )
6031, 50, 59, 26, 45lt2halvesd 10862 . 2  |-  ( ph  ->  ( ( ( A D B ) C ( Y D B ) )  +  ( ( Y D B ) C ( Y D Z ) ) )  <  R )
6158, 51, 59, 56, 60lelttrd 9795 1  |-  ( ph  ->  ( ( A D B ) C ( Y D Z ) )  <  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1438    e. wcel 1869   class class class wbr 4421   ` cfv 5599  (class class class)co 6303   RRcr 9540    + caddc 9544   RR*cxr 9676    < clt 9677    <_ cle 9678    / cdiv 10271   2c2 10661   RR+crp 11304   +ecxad 11409   distcds 15192   RR*scxrs 15391   *Metcxmt 18948   MetOpencmopn 18953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-er 7369  df-map 7480  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-sup 7960  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-3 10671  df-4 10672  df-5 10673  df-6 10674  df-7 10675  df-8 10676  df-9 10677  df-10 10678  df-n0 10872  df-z 10940  df-dec 11054  df-uz 11162  df-rp 11305  df-xneg 11411  df-xadd 11412  df-xmul 11413  df-icc 11644  df-fz 11787  df-seq 12215  df-exp 12274  df-cj 13156  df-re 13157  df-im 13158  df-sqrt 13292  df-abs 13293  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-plusg 15196  df-mulr 15197  df-tset 15202  df-ple 15203  df-ds 15205  df-xrs 15393  df-xmet 18956
This theorem is referenced by:  xmetdcn2  21847
  Copyright terms: Public domain W3C validator