MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp3 Structured version   Visualization version   Unicode version

Theorem metcnp3 21555
Description: Two ways to express that  F is continuous at  P for metric spaces. Proposition 14-4.2 of [Gleason] p. 240. (Contributed by NM, 17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnp3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
Distinct variable groups:    y, z, F    y, J, z    y, K, z    y, X, z   
y, Y, z    y, C, z    y, D, z   
y, P, z

Proof of Theorem metcnp3
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . . . 5  |-  J  =  ( MetOpen `  C )
21mopntopon 21454 . . . 4  |-  ( C  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
323ad2ant1 1029 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  J  e.  (TopOn `  X )
)
4 metcn.4 . . . . 5  |-  K  =  ( MetOpen `  D )
54mopnval 21453 . . . 4  |-  ( D  e.  ( *Met `  Y )  ->  K  =  ( topGen `  ran  ( ball `  D )
) )
653ad2ant2 1030 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  K  =  ( topGen `  ran  ( ball `  D )
) )
74mopntopon 21454 . . . 4  |-  ( D  e.  ( *Met `  Y )  ->  K  e.  (TopOn `  Y )
)
873ad2ant2 1030 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  K  e.  (TopOn `  Y )
)
9 simp3 1010 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  P  e.  X )
103, 6, 8, 9tgcnp 20269 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. u  e.  ran  ( ball `  D ) ( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) ) )
11 simpll2 1048 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  ->  D  e.  ( *Met `  Y ) )
12 simplr 762 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  ->  F : X --> Y )
13 simpll3 1049 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  ->  P  e.  X )
1412, 13ffvelrnd 6023 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( F `  P
)  e.  Y )
15 simpr 463 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
y  e.  RR+ )
16 blcntr 21428 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  Y )  /\  ( F `  P )  e.  Y  /\  y  e.  RR+ )  ->  ( F `  P
)  e.  ( ( F `  P ) ( ball `  D
) y ) )
1711, 14, 15, 16syl3anc 1268 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( F `  P
)  e.  ( ( F `  P ) ( ball `  D
) y ) )
18 rpxr 11309 . . . . . . . . . 10  |-  ( y  e.  RR+  ->  y  e. 
RR* )
1918adantl 468 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
y  e.  RR* )
20 blelrn 21432 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  Y )  /\  ( F `  P )  e.  Y  /\  y  e.  RR* )  ->  ( ( F `  P ) ( ball `  D ) y )  e.  ran  ( ball `  D ) )
2111, 14, 19, 20syl3anc 1268 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( ( F `  P ) ( ball `  D ) y )  e.  ran  ( ball `  D ) )
22 eleq2 2518 . . . . . . . . . 10  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( F `  P
)  e.  u  <->  ( F `  P )  e.  ( ( F `  P
) ( ball `  D
) y ) ) )
23 sseq2 3454 . . . . . . . . . . . 12  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( F " v
)  C_  u  <->  ( F " v )  C_  (
( F `  P
) ( ball `  D
) y ) ) )
2423anbi2d 710 . . . . . . . . . . 11  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( P  e.  v  /\  ( F "
v )  C_  u
)  <->  ( P  e.  v  /\  ( F
" v )  C_  ( ( F `  P ) ( ball `  D ) y ) ) ) )
2524rexbidv 2901 . . . . . . . . . 10  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  ( E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )  <->  E. v  e.  J  ( P  e.  v  /\  ( F " v ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) ) )
2622, 25imbi12d 322 . . . . . . . . 9  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
)  <->  ( ( F `
 P )  e.  ( ( F `  P ) ( ball `  D ) y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  ( ( F `  P )
( ball `  D )
y ) ) ) ) )
2726rspcv 3146 . . . . . . . 8  |-  ( ( ( F `  P
) ( ball `  D
) y )  e. 
ran  ( ball `  D
)  ->  ( A. u  e.  ran  ( ball `  D ) ( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  -> 
( ( F `  P )  e.  ( ( F `  P
) ( ball `  D
) y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  ( ( F `  P )
( ball `  D )
y ) ) ) ) )
2821, 27syl 17 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  -> 
( ( F `  P )  e.  ( ( F `  P
) ( ball `  D
) y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  ( ( F `  P )
( ball `  D )
y ) ) ) ) )
2917, 28mpid 42 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
30 simpl1 1011 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  C  e.  ( *Met `  X ) )
3130ad2antrr 732 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  C  e.  ( *Met `  X ) )
32 simplrr 771 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  v  e.  J )
33 simpr 463 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  P  e.  v )
341mopni2 21508 . . . . . . . . . . 11  |-  ( ( C  e.  ( *Met `  X )  /\  v  e.  J  /\  P  e.  v
)  ->  E. z  e.  RR+  ( P (
ball `  C )
z )  C_  v
)
3531, 32, 33, 34syl3anc 1268 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  E. z  e.  RR+  ( P (
ball `  C )
z )  C_  v
)
36 imass2 5204 . . . . . . . . . . . . 13  |-  ( ( P ( ball `  C
) z )  C_  v  ->  ( F "
( P ( ball `  C ) z ) )  C_  ( F " v ) )
37 sstr2 3439 . . . . . . . . . . . . 13  |-  ( ( F " ( P ( ball `  C
) z ) ) 
C_  ( F "
v )  ->  (
( F " v
)  C_  ( ( F `  P )
( ball `  D )
y )  ->  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
3836, 37syl 17 . . . . . . . . . . . 12  |-  ( ( P ( ball `  C
) z )  C_  v  ->  ( ( F
" v )  C_  ( ( F `  P ) ( ball `  D ) y )  ->  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) )
3938com12 32 . . . . . . . . . . 11  |-  ( ( F " v ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( P ( ball `  C ) z ) 
C_  v  ->  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
4039reximdv 2861 . . . . . . . . . 10  |-  ( ( F " v ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  ( E. z  e.  RR+  ( P ( ball `  C
) z )  C_  v  ->  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )
4135, 40syl5com 31 . . . . . . . . 9  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  (
( F " v
)  C_  ( ( F `  P )
( ball `  D )
y )  ->  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) )
4241expimpd 608 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  ->  ( ( P  e.  v  /\  ( F " v ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  ->  E. z  e.  RR+  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
4342expr 620 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( v  e.  J  ->  ( ( P  e.  v  /\  ( F
" v )  C_  ( ( F `  P ) ( ball `  D ) y ) )  ->  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
4443rexlimdv 2877 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( E. v  e.  J  ( P  e.  v  /\  ( F
" v )  C_  ( ( F `  P ) ( ball `  D ) y ) )  ->  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) )
4529, 44syld 45 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  ->  E. z  e.  RR+  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
4645ralrimdva 2806 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  ->  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) )
47 simpl2 1012 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  D  e.  ( *Met `  Y ) )
48 blss 21440 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  Y )  /\  u  e.  ran  ( ball `  D )  /\  ( F `  P
)  e.  u )  ->  E. y  e.  RR+  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )
49483expib 1211 . . . . . . . . 9  |-  ( D  e.  ( *Met `  Y )  ->  (
( u  e.  ran  ( ball `  D )  /\  ( F `  P
)  e.  u )  ->  E. y  e.  RR+  ( ( F `  P ) ( ball `  D ) y ) 
C_  u ) )
5047, 49syl 17 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( ( u  e. 
ran  ( ball `  D
)  /\  ( F `  P )  e.  u
)  ->  E. y  e.  RR+  ( ( F `
 P ) (
ball `  D )
y )  C_  u
) )
51 r19.29r 2926 . . . . . . . . . 10  |-  ( ( E. y  e.  RR+  ( ( F `  P ) ( ball `  D ) y ) 
C_  u  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) )  ->  E. y  e.  RR+  (
( ( F `  P ) ( ball `  D ) y ) 
C_  u  /\  E. z  e.  RR+  ( F
" ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
5230ad3antrrr 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  C  e.  ( *Met `  X
) )
5313ad2antrr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  P  e.  X
)
54 rpxr 11309 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  RR+  ->  z  e. 
RR* )
5554ad2antrl 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  z  e.  RR* )
561blopn 21515 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  RR* )  ->  ( P ( ball `  C ) z )  e.  J )
5752, 53, 55, 56syl3anc 1268 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  ( P (
ball `  C )
z )  e.  J
)
58 simprl 764 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  z  e.  RR+ )
59 blcntr 21428 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  RR+ )  ->  P  e.  ( P ( ball `  C
) z ) )
6052, 53, 58, 59syl3anc 1268 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  P  e.  ( P ( ball `  C
) z ) )
61 sstr 3440 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  /\  (
( F `  P
) ( ball `  D
) y )  C_  u )  ->  ( F " ( P (
ball `  C )
z ) )  C_  u )
6261ad2ant2l 752 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  /\  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u ) )  ->  ( F "
( P ( ball `  C ) z ) )  C_  u )
6362ancoms 455 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  ( F "
( P ( ball `  C ) z ) )  C_  u )
64 eleq2 2518 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( P (
ball `  C )
z )  ->  ( P  e.  v  <->  P  e.  ( P ( ball `  C
) z ) ) )
65 imaeq2 5164 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( P (
ball `  C )
z )  ->  ( F " v )  =  ( F " ( P ( ball `  C
) z ) ) )
6665sseq1d 3459 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( P (
ball `  C )
z )  ->  (
( F " v
)  C_  u  <->  ( F " ( P ( ball `  C ) z ) )  C_  u )
)
6764, 66anbi12d 717 . . . . . . . . . . . . . . . 16  |-  ( v  =  ( P (
ball `  C )
z )  ->  (
( P  e.  v  /\  ( F "
v )  C_  u
)  <->  ( P  e.  ( P ( ball `  C ) z )  /\  ( F "
( P ( ball `  C ) z ) )  C_  u )
) )
6867rspcev 3150 . . . . . . . . . . . . . . 15  |-  ( ( ( P ( ball `  C ) z )  e.  J  /\  ( P  e.  ( P
( ball `  C )
z )  /\  ( F " ( P (
ball `  C )
z ) )  C_  u ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
)
6957, 60, 63, 68syl12anc 1266 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
)
7069expr 620 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  z  e.  RR+ )  -> 
( ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )
7170rexlimdva 2879 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  -> 
( E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )
7271expimpd 608 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( ( ( ( F `  P ) ( ball `  D
) y )  C_  u  /\  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) )
7372rexlimdva 2879 . . . . . . . . . 10  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( E. y  e.  RR+  ( ( ( F `
 P ) (
ball `  D )
y )  C_  u  /\  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) )
7451, 73syl5 33 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( ( E. y  e.  RR+  ( ( F `
 P ) (
ball `  D )
y )  C_  u  /\  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )
7574expd 438 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( E. y  e.  RR+  ( ( F `  P ) ( ball `  D ) y ) 
C_  u  ->  ( A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) )
7650, 75syld 45 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( ( u  e. 
ran  ( ball `  D
)  /\  ( F `  P )  e.  u
)  ->  ( A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) )
7776com23 81 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( u  e.  ran  ( ball `  D )  /\  ( F `  P
)  e.  u )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) ) )
7877exp4a 611 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  (
u  e.  ran  ( ball `  D )  -> 
( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) ) ) )
7978ralrimdv 2804 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  A. u  e.  ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) )
8046, 79impbid 194 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  <->  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )
8180pm5.32da 647 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  (
( F : X --> Y  /\  A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )  <-> 
( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) ) )
8210, 81bitrd 257 1  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   A.wral 2737   E.wrex 2738    C_ wss 3404   ran crn 4835   "cima 4837   -->wf 5578   ` cfv 5582  (class class class)co 6290   RR*cxr 9674   RR+crp 11302   topGenctg 15336   *Metcxmt 18955   ballcbl 18957   MetOpencmopn 18960  TopOnctopon 19918    CnP ccnp 20241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-sup 7956  df-inf 7957  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-topgen 15342  df-psmet 18962  df-xmet 18963  df-bl 18965  df-mopn 18966  df-top 19921  df-bases 19922  df-topon 19923  df-cnp 20244
This theorem is referenced by:  metcnp  21556
  Copyright terms: Public domain W3C validator