MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp2 Unicode version

Theorem metcnp2 18525
Description: Two ways to say a mapping from metric  C to metric  D is continuous at point  P. The distance arguments are swapped compared to metcnp 18524 (and Munkres' metcn 18526) for compatibility with df-lm 17247. Definition 1.3-3 of [Kreyszig] p. 20. (Contributed by NM, 4-Jun-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnp2  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( w C P )  < 
z  ->  ( ( F `  w ) D ( F `  P ) )  < 
y ) ) ) )
Distinct variable groups:    y, w, z, F    w, J, y, z    w, K, y, z    w, X, y, z    w, Y, y, z    w, C, y, z    w, D, y, z    w, P, y, z

Proof of Theorem metcnp2
StepHypRef Expression
1 metcn.2 . . 3  |-  J  =  ( MetOpen `  C )
2 metcn.4 . . 3  |-  K  =  ( MetOpen `  D )
31, 2metcnp 18524 . 2  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
4 simpl1 960 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  C  e.  ( * Met `  X ) )
54ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  C  e.  ( * Met `  X
) )
6 simpl3 962 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  P  e.  X )
76ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  P  e.  X )
8 simpr 448 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  w  e.  X )
9 xmetsym 18330 . . . . . . . . . 10  |-  ( ( C  e.  ( * Met `  X )  /\  P  e.  X  /\  w  e.  X
)  ->  ( P C w )  =  ( w C P ) )
105, 7, 8, 9syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  ( P C w )  =  ( w C P ) )
1110breq1d 4182 . . . . . . . 8  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( P C w )  <  z  <->  ( w C P )  <  z
) )
12 simpl2 961 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  D  e.  ( * Met `  Y ) )
1312ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  D  e.  ( * Met `  Y
) )
14 simpllr 736 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  F : X --> Y )
1514, 7ffvelrnd 5830 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  ( F `  P )  e.  Y )
1614, 8ffvelrnd 5830 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  ( F `  w )  e.  Y )
17 xmetsym 18330 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  Y )  /\  ( F `  P )  e.  Y  /\  ( F `  w
)  e.  Y )  ->  ( ( F `
 P ) D ( F `  w
) )  =  ( ( F `  w
) D ( F `
 P ) ) )
1813, 15, 16, 17syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( F `  P
) D ( F `
 w ) )  =  ( ( F `
 w ) D ( F `  P
) ) )
1918breq1d 4182 . . . . . . . 8  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( ( F `  P ) D ( F `  w ) )  <  y  <->  ( ( F `  w ) D ( F `  P ) )  < 
y ) )
2011, 19imbi12d 312 . . . . . . 7  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y )  <-> 
( ( w C P )  <  z  ->  ( ( F `  w ) D ( F `  P ) )  <  y ) ) )
2120ralbidva 2682 . . . . . 6  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( A. w  e.  X  (
( P C w )  <  z  -> 
( ( F `  P ) D ( F `  w ) )  <  y )  <->  A. w  e.  X  ( ( w C P )  <  z  ->  ( ( F `  w ) D ( F `  P ) )  <  y ) ) )
2221anassrs 630 . . . . 5  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  z  e.  RR+ )  -> 
( A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y )  <->  A. w  e.  X  ( (
w C P )  <  z  ->  (
( F `  w
) D ( F `
 P ) )  <  y ) ) )
2322rexbidva 2683 . . . 4  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y )  <->  E. z  e.  RR+  A. w  e.  X  ( (
w C P )  <  z  ->  (
( F `  w
) D ( F `
 P ) )  <  y ) ) )
2423ralbidva 2682 . . 3  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  -> 
( ( F `  P ) D ( F `  w ) )  <  y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( w C P )  < 
z  ->  ( ( F `  w ) D ( F `  P ) )  < 
y ) ) )
2524pm5.32da 623 . 2  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  (
( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  -> 
( ( F `  P ) D ( F `  w ) )  <  y ) )  <->  ( F : X
--> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( w C P )  <  z  ->  ( ( F `  w ) D ( F `  P ) )  <  y ) ) ) )
263, 25bitrd 245 1  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( w C P )  < 
z  ->  ( ( F `  w ) D ( F `  P ) )  < 
y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   class class class wbr 4172   -->wf 5409   ` cfv 5413  (class class class)co 6040    < clt 9076   RR+crp 10568   * Metcxmt 16641   MetOpencmopn 16646    CnP ccnp 17243
This theorem is referenced by:  metcnpi2  18528  rlimcnp  20757
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-topgen 13622  df-psmet 16649  df-xmet 16650  df-bl 16652  df-mopn 16653  df-top 16918  df-bases 16920  df-topon 16921  df-cnp 17246
  Copyright terms: Public domain W3C validator