MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp Structured version   Unicode version

Theorem metcnp 21022
Description: Two ways to say a mapping from metric  C to metric  D is continuous at point  P. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnp  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
Distinct variable groups:    y, w, z, F    w, J, y, z    w, K, y, z    w, X, y, z    w, Y, y, z    w, C, y, z    w, D, y, z    w, P, y, z

Proof of Theorem metcnp
StepHypRef Expression
1 metcn.2 . . 3  |-  J  =  ( MetOpen `  C )
2 metcn.4 . . 3  |-  K  =  ( MetOpen `  D )
31, 2metcnp3 21021 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
4 ffun 5723 . . . . . . . . 9  |-  ( F : X --> Y  ->  Fun  F )
54ad2antlr 726 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  Fun  F )
6 simpll1 1036 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  C  e.  ( *Met `  X
) )
7 simpll3 1038 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  P  e.  X )
8 rpxr 11238 . . . . . . . . . . 11  |-  ( z  e.  RR+  ->  z  e. 
RR* )
98ad2antll 728 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  z  e.  RR* )
10 blssm 20899 . . . . . . . . . 10  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  RR* )  ->  ( P ( ball `  C ) z ) 
C_  X )
116, 7, 9, 10syl3anc 1229 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( P
( ball `  C )
z )  C_  X
)
12 fdm 5725 . . . . . . . . . 10  |-  ( F : X --> Y  ->  dom  F  =  X )
1312ad2antlr 726 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  dom  F  =  X )
1411, 13sseqtr4d 3526 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( P
( ball `  C )
z )  C_  dom  F )
15 funimass4 5909 . . . . . . . 8  |-  ( ( Fun  F  /\  ( P ( ball `  C
) z )  C_  dom  F )  ->  (
( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  <->  A. w  e.  ( P ( ball `  C ) z ) ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) ) )
165, 14, 15syl2anc 661 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y )  <->  A. w  e.  ( P ( ball `  C
) z ) ( F `  w )  e.  ( ( F `
 P ) (
ball `  D )
y ) ) )
17 elbl 20869 . . . . . . . . . . 11  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  RR* )  ->  ( w  e.  ( P ( ball `  C
) z )  <->  ( w  e.  X  /\  ( P C w )  < 
z ) ) )
186, 7, 9, 17syl3anc 1229 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( w  e.  ( P ( ball `  C ) z )  <-> 
( w  e.  X  /\  ( P C w )  <  z ) ) )
1918imbi1d 317 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
w  e.  ( P ( ball `  C
) z )  -> 
( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) )  <-> 
( ( w  e.  X  /\  ( P C w )  < 
z )  ->  ( F `  w )  e.  ( ( F `  P ) ( ball `  D ) y ) ) ) )
20 impexp 446 . . . . . . . . . 10  |-  ( ( ( w  e.  X  /\  ( P C w )  <  z )  ->  ( F `  w )  e.  ( ( F `  P
) ( ball `  D
) y ) )  <-> 
( w  e.  X  ->  ( ( P C w )  <  z  ->  ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) ) ) )
21 simpl2 1001 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  D  e.  ( *Met `  Y ) )
2221ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  D  e.  ( *Met `  Y ) )
23 simplrl 761 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  y  e.  RR+ )
2423rpxrd 11268 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  y  e.  RR* )
25 simpllr 760 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  F : X --> Y )
267adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  P  e.  X )
2725, 26ffvelrnd 6017 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  ( F `  P )  e.  Y )
28 simplr 755 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  F : X
--> Y )
2928ffvelrnda 6016 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  ( F `  w )  e.  Y )
30 elbl2 20871 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  Y
)  /\  y  e.  RR* )  /\  ( ( F `  P )  e.  Y  /\  ( F `  w )  e.  Y ) )  -> 
( ( F `  w )  e.  ( ( F `  P
) ( ball `  D
) y )  <->  ( ( F `  P ) D ( F `  w ) )  < 
y ) )
3122, 24, 27, 29, 30syl22anc 1230 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y )  <->  ( ( F `  P ) D ( F `  w ) )  < 
y ) )
3231imbi2d 316 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( ( P C w )  <  z  ->  ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) )  <-> 
( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
3332pm5.74da 687 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
w  e.  X  -> 
( ( P C w )  <  z  ->  ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) ) )  <->  ( w  e.  X  ->  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
3420, 33syl5bb 257 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( w  e.  X  /\  ( P C w )  <  z )  ->  ( F `  w )  e.  ( ( F `  P
) ( ball `  D
) y ) )  <-> 
( w  e.  X  ->  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
3519, 34bitrd 253 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
w  e.  ( P ( ball `  C
) z )  -> 
( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) )  <-> 
( w  e.  X  ->  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
3635ralbidv2 2878 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( A. w  e.  ( P
( ball `  C )
z ) ( F `
 w )  e.  ( ( F `  P ) ( ball `  D ) y )  <->  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
3716, 36bitrd 253 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y )  <->  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
3837anassrs 648 . . . . 5  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  z  e.  RR+ )  -> 
( ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  <->  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) )
3938rexbidva 2951 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  <->  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) )
4039ralbidva 2879 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
4140pm5.32da 641 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  (
( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
423, 41bitrd 253 1  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   A.wral 2793   E.wrex 2794    C_ wss 3461   class class class wbr 4437   dom cdm 4989   "cima 4992   Fun wfun 5572   -->wf 5574   ` cfv 5578  (class class class)co 6281   RR*cxr 9630    < clt 9631   RR+crp 11231   *Metcxmt 18382   ballcbl 18384   MetOpencmopn 18387    CnP ccnp 19704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-er 7313  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-sup 7903  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-n0 10803  df-z 10872  df-uz 11093  df-q 11194  df-rp 11232  df-xneg 11329  df-xadd 11330  df-xmul 11331  df-topgen 14823  df-psmet 18390  df-xmet 18391  df-bl 18393  df-mopn 18394  df-top 19377  df-bases 19379  df-topon 19380  df-cnp 19707
This theorem is referenced by:  metcnp2  21023  metcn  21024  metcnpi  21025  txmetcnp  21028  abelth  22814  qqhcn  27950
  Copyright terms: Public domain W3C validator