MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp Structured version   Unicode version

Theorem metcnp 21334
Description: Two ways to say a mapping from metric  C to metric  D is continuous at point  P. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnp  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
Distinct variable groups:    y, w, z, F    w, J, y, z    w, K, y, z    w, X, y, z    w, Y, y, z    w, C, y, z    w, D, y, z    w, P, y, z

Proof of Theorem metcnp
StepHypRef Expression
1 metcn.2 . . 3  |-  J  =  ( MetOpen `  C )
2 metcn.4 . . 3  |-  K  =  ( MetOpen `  D )
31, 2metcnp3 21333 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
4 ffun 5715 . . . . . . . . 9  |-  ( F : X --> Y  ->  Fun  F )
54ad2antlr 725 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  Fun  F )
6 simpll1 1036 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  C  e.  ( *Met `  X
) )
7 simpll3 1038 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  P  e.  X )
8 rpxr 11271 . . . . . . . . . . 11  |-  ( z  e.  RR+  ->  z  e. 
RR* )
98ad2antll 727 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  z  e.  RR* )
10 blssm 21211 . . . . . . . . . 10  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  RR* )  ->  ( P ( ball `  C ) z ) 
C_  X )
116, 7, 9, 10syl3anc 1230 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( P
( ball `  C )
z )  C_  X
)
12 fdm 5717 . . . . . . . . . 10  |-  ( F : X --> Y  ->  dom  F  =  X )
1312ad2antlr 725 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  dom  F  =  X )
1411, 13sseqtr4d 3478 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( P
( ball `  C )
z )  C_  dom  F )
15 funimass4 5899 . . . . . . . 8  |-  ( ( Fun  F  /\  ( P ( ball `  C
) z )  C_  dom  F )  ->  (
( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  <->  A. w  e.  ( P ( ball `  C ) z ) ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) ) )
165, 14, 15syl2anc 659 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y )  <->  A. w  e.  ( P ( ball `  C
) z ) ( F `  w )  e.  ( ( F `
 P ) (
ball `  D )
y ) ) )
17 elbl 21181 . . . . . . . . . . 11  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  RR* )  ->  ( w  e.  ( P ( ball `  C
) z )  <->  ( w  e.  X  /\  ( P C w )  < 
z ) ) )
186, 7, 9, 17syl3anc 1230 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( w  e.  ( P ( ball `  C ) z )  <-> 
( w  e.  X  /\  ( P C w )  <  z ) ) )
1918imbi1d 315 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
w  e.  ( P ( ball `  C
) z )  -> 
( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) )  <-> 
( ( w  e.  X  /\  ( P C w )  < 
z )  ->  ( F `  w )  e.  ( ( F `  P ) ( ball `  D ) y ) ) ) )
20 impexp 444 . . . . . . . . . 10  |-  ( ( ( w  e.  X  /\  ( P C w )  <  z )  ->  ( F `  w )  e.  ( ( F `  P
) ( ball `  D
) y ) )  <-> 
( w  e.  X  ->  ( ( P C w )  <  z  ->  ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) ) ) )
21 simpl2 1001 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  D  e.  ( *Met `  Y ) )
2221ad2antrr 724 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  D  e.  ( *Met `  Y ) )
23 simplrl 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  y  e.  RR+ )
2423rpxrd 11304 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  y  e.  RR* )
25 simpllr 761 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  F : X --> Y )
267adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  P  e.  X )
2725, 26ffvelrnd 6009 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  ( F `  P )  e.  Y )
28 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  F : X
--> Y )
2928ffvelrnda 6008 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  ( F `  w )  e.  Y )
30 elbl2 21183 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  Y
)  /\  y  e.  RR* )  /\  ( ( F `  P )  e.  Y  /\  ( F `  w )  e.  Y ) )  -> 
( ( F `  w )  e.  ( ( F `  P
) ( ball `  D
) y )  <->  ( ( F `  P ) D ( F `  w ) )  < 
y ) )
3122, 24, 27, 29, 30syl22anc 1231 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y )  <->  ( ( F `  P ) D ( F `  w ) )  < 
y ) )
3231imbi2d 314 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( ( P C w )  <  z  ->  ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) )  <-> 
( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
3332pm5.74da 685 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
w  e.  X  -> 
( ( P C w )  <  z  ->  ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) ) )  <->  ( w  e.  X  ->  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
3420, 33syl5bb 257 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( w  e.  X  /\  ( P C w )  <  z )  ->  ( F `  w )  e.  ( ( F `  P
) ( ball `  D
) y ) )  <-> 
( w  e.  X  ->  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
3519, 34bitrd 253 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
w  e.  ( P ( ball `  C
) z )  -> 
( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) )  <-> 
( w  e.  X  ->  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
3635ralbidv2 2838 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( A. w  e.  ( P
( ball `  C )
z ) ( F `
 w )  e.  ( ( F `  P ) ( ball `  D ) y )  <->  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
3716, 36bitrd 253 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y )  <->  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
3837anassrs 646 . . . . 5  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  z  e.  RR+ )  -> 
( ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  <->  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) )
3938rexbidva 2914 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  <->  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) )
4039ralbidva 2839 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
4140pm5.32da 639 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  (
( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
423, 41bitrd 253 1  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   A.wral 2753   E.wrex 2754    C_ wss 3413   class class class wbr 4394   dom cdm 4822   "cima 4825   Fun wfun 5562   -->wf 5564   ` cfv 5568  (class class class)co 6277   RR*cxr 9656    < clt 9657   RR+crp 11264   *Metcxmt 18721   ballcbl 18723   MetOpencmopn 18726    CnP ccnp 20017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-er 7347  df-map 7458  df-en 7554  df-dom 7555  df-sdom 7556  df-sup 7934  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-n0 10836  df-z 10905  df-uz 11127  df-q 11227  df-rp 11265  df-xneg 11370  df-xadd 11371  df-xmul 11372  df-topgen 15056  df-psmet 18729  df-xmet 18730  df-bl 18732  df-mopn 18733  df-top 19689  df-bases 19691  df-topon 19692  df-cnp 20020
This theorem is referenced by:  metcnp2  21335  metcn  21336  metcnpi  21337  txmetcnp  21340  abelth  23126  qqhcn  28410
  Copyright terms: Public domain W3C validator