MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcn Structured version   Unicode version

Theorem metcn 21340
Description: Two ways to say a mapping from metric  C to metric  D is continuous. Theorem 10.1 of [Munkres] p. 127. The second biconditional argument says that for every positive "epsilon"  y there is a positive "delta"  z such that a distance less than delta in  C maps to a distance less than epsilon in  D. (Contributed by NM, 15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcn  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
) )  ->  ( F  e.  ( J  Cn  K )  <->  ( F : X --> Y  /\  A. x  e.  X  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  < 
z  ->  ( ( F `  x ) D ( F `  w ) )  < 
y ) ) ) )
Distinct variable groups:    x, w, y, z, F    w, J, x, y, z    w, K, x, y, z    w, X, x, y, z    w, Y, x, y, z    w, C, x, y, z    w, D, x, y, z

Proof of Theorem metcn
StepHypRef Expression
1 metcn.2 . . . 4  |-  J  =  ( MetOpen `  C )
21mopntopon 21236 . . 3  |-  ( C  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
3 metcn.4 . . . 4  |-  K  =  ( MetOpen `  D )
43mopntopon 21236 . . 3  |-  ( D  e.  ( *Met `  Y )  ->  K  e.  (TopOn `  Y )
)
5 cncnp 20076 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) ) )
62, 4, 5syl2an 477 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
) )  ->  ( F  e.  ( J  Cn  K )  <->  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) ) )
71, 3metcnp 21338 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  x  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  x )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  < 
z  ->  ( ( F `  x ) D ( F `  w ) )  < 
y ) ) ) )
873expa 1199 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  x  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  x )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  < 
z  ->  ( ( F `  x ) D ( F `  w ) )  < 
y ) ) ) )
98adantlr 715 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  F : X --> Y )  /\  x  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  x )  <-> 
( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  <  z  -> 
( ( F `  x ) D ( F `  w ) )  <  y ) ) ) )
10 simplr 756 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  F : X --> Y )  /\  x  e.  X
)  ->  F : X
--> Y )
1110biantrurd 508 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  F : X --> Y )  /\  x  e.  X
)  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  < 
z  ->  ( ( F `  x ) D ( F `  w ) )  < 
y )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  < 
z  ->  ( ( F `  x ) D ( F `  w ) )  < 
y ) ) ) )
129, 11bitr4d 258 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  F : X --> Y )  /\  x  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  x )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  < 
z  ->  ( ( F `  x ) D ( F `  w ) )  < 
y ) ) )
1312ralbidva 2842 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  F : X --> Y )  -> 
( A. x  e.  X  F  e.  ( ( J  CnP  K
) `  x )  <->  A. x  e.  X  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  < 
z  ->  ( ( F `  x ) D ( F `  w ) )  < 
y ) ) )
1413pm5.32da 641 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
) )  ->  (
( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K
) `  x )
)  <->  ( F : X
--> Y  /\  A. x  e.  X  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  <  z  ->  ( ( F `  x ) D ( F `  w ) )  <  y ) ) ) )
156, 14bitrd 255 1  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
) )  ->  ( F  e.  ( J  Cn  K )  <->  ( F : X --> Y  /\  A. x  e.  X  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  < 
z  ->  ( ( F `  x ) D ( F `  w ) )  < 
y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 186    /\ wa 369    = wceq 1407    e. wcel 1844   A.wral 2756   E.wrex 2757   class class class wbr 4397   -->wf 5567   ` cfv 5571  (class class class)co 6280    < clt 9660   RR+crp 11267   *Metcxmt 18725   MetOpencmopn 18730  TopOnctopon 19689    Cn ccn 20020    CnP ccnp 20021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601  ax-pre-sup 9602
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-er 7350  df-map 7461  df-en 7557  df-dom 7558  df-sdom 7559  df-sup 7937  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-div 10250  df-nn 10579  df-2 10637  df-n0 10839  df-z 10908  df-uz 11130  df-q 11230  df-rp 11268  df-xneg 11373  df-xadd 11374  df-xmul 11375  df-topgen 15060  df-psmet 18733  df-xmet 18734  df-bl 18736  df-mopn 18737  df-top 19693  df-bases 19695  df-topon 19696  df-cn 20023  df-cnp 20024
This theorem is referenced by:  nrginvrcn  21494  nghmcn  21546  metdscn  21654  divcn  21666  cncfmet  21706  nmcvcn  26032  blocni  26147  hhcno  27249  hhcnf  27250  fmcncfil  28379  heicant  31434
  Copyright terms: Public domain W3C validator