MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  met2ndci Structured version   Visualization version   Unicode version

Theorem met2ndci 21615
Description: A separable metric space (a metric space with a countable dense subset) is second-countable. (Contributed by Mario Carneiro, 13-Apr-2015.)
Hypothesis
Ref Expression
methaus.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
met2ndci  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  ->  J  e.  2ndc )

Proof of Theorem met2ndci
Dummy variables  n  r  t  u  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 methaus.1 . . . . 5  |-  J  =  ( MetOpen `  D )
21mopntop 21533 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
32adantr 472 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  ->  J  e.  Top )
4 simpll 768 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( A  C_  X  /\  A  ~<_  om 
/\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  D  e.  ( *Met `  X ) )
5 simplr1 1072 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( A  C_  X  /\  A  ~<_  om 
/\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  A  C_  X )
6 simprr 774 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( A  C_  X  /\  A  ~<_  om 
/\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
y  e.  A )
75, 6sseldd 3419 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( A  C_  X  /\  A  ~<_  om 
/\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
y  e.  X )
8 simprl 772 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( A  C_  X  /\  A  ~<_  om 
/\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  x  e.  NN )
98nnrpd 11362 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( A  C_  X  /\  A  ~<_  om 
/\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  x  e.  RR+ )
109rpreccld 11374 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( A  C_  X  /\  A  ~<_  om 
/\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( 1  /  x
)  e.  RR+ )
1110rpxrd 11365 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( A  C_  X  /\  A  ~<_  om 
/\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( 1  /  x
)  e.  RR* )
121blopn 21593 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  ( 1  /  x
)  e.  RR* )  ->  ( y ( ball `  D ) ( 1  /  x ) )  e.  J )
134, 7, 11, 12syl3anc 1292 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( A  C_  X  /\  A  ~<_  om 
/\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( y ( ball `  D ) ( 1  /  x ) )  e.  J )
1413ralrimivva 2814 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  ->  A. x  e.  NN  A. y  e.  A  ( y ( ball `  D
) ( 1  /  x ) )  e.  J )
15 eqid 2471 . . . . . 6  |-  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D
) ( 1  /  x ) ) )  =  ( x  e.  NN ,  y  e.  A  |->  ( y (
ball `  D )
( 1  /  x
) ) )
1615fmpt2 6879 . . . . 5  |-  ( A. x  e.  NN  A. y  e.  A  ( y
( ball `  D )
( 1  /  x
) )  e.  J  <->  ( x  e.  NN , 
y  e.  A  |->  ( y ( ball `  D
) ( 1  /  x ) ) ) : ( NN  X.  A ) --> J )
1714, 16sylib 201 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  -> 
( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) ) : ( NN 
X.  A ) --> J )
18 frn 5747 . . . 4  |-  ( ( x  e.  NN , 
y  e.  A  |->  ( y ( ball `  D
) ( 1  /  x ) ) ) : ( NN  X.  A ) --> J  ->  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) )  C_  J )
1917, 18syl 17 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  ->  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) )  C_  J )
20 simpll 768 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( A  C_  X  /\  A  ~<_  om 
/\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  ->  D  e.  ( *Met `  X ) )
21 simprl 772 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( A  C_  X  /\  A  ~<_  om 
/\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  ->  u  e.  J )
22 simprr 774 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( A  C_  X  /\  A  ~<_  om 
/\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  -> 
z  e.  u )
231mopni2 21586 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  u  e.  J  /\  z  e.  u
)  ->  E. r  e.  RR+  ( z (
ball `  D )
r )  C_  u
)
2420, 21, 22, 23syl3anc 1292 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( A  C_  X  /\  A  ~<_  om 
/\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  ->  E. r  e.  RR+  (
z ( ball `  D
) r )  C_  u )
25 simprl 772 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( r  e.  RR+  /\  ( z ( ball `  D ) r ) 
C_  u ) )  ->  r  e.  RR+ )
2625rphalfcld 11376 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( r  e.  RR+  /\  ( z ( ball `  D ) r ) 
C_  u ) )  ->  ( r  / 
2 )  e.  RR+ )
27 elrp 11327 . . . . . . . 8  |-  ( ( r  /  2 )  e.  RR+  <->  ( ( r  /  2 )  e.  RR  /\  0  < 
( r  /  2
) ) )
28 nnrecl 10891 . . . . . . . 8  |-  ( ( ( r  /  2
)  e.  RR  /\  0  <  ( r  / 
2 ) )  ->  E. n  e.  NN  ( 1  /  n
)  <  ( r  /  2 ) )
2927, 28sylbi 200 . . . . . . 7  |-  ( ( r  /  2 )  e.  RR+  ->  E. n  e.  NN  ( 1  /  n )  <  (
r  /  2 ) )
3026, 29syl 17 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( r  e.  RR+  /\  ( z ( ball `  D ) r ) 
C_  u ) )  ->  E. n  e.  NN  ( 1  /  n
)  <  ( r  /  2 ) )
313ad2antrr 740 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  J  e.  Top )
32 simpr1 1036 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  ->  A  C_  X )
3332ad2antrr 740 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  A  C_  X
)
341mopnuni 21534 . . . . . . . . . . . 12  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
3534ad3antrrr 744 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  X  =  U. J )
3633, 35sseqtrd 3454 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  A  C_  U. J
)
37 simplrr 779 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  z  e.  u
)
38 simplrl 778 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  u  e.  J
)
39 elunii 4195 . . . . . . . . . . . . 13  |-  ( ( z  e.  u  /\  u  e.  J )  ->  z  e.  U. J
)
4037, 38, 39syl2anc 673 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  z  e.  U. J )
4140, 35eleqtrrd 2552 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  z  e.  X
)
42 simpr3 1038 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  -> 
( ( cls `  J
) `  A )  =  X )
4342ad2antrr 740 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  ( ( cls `  J ) `  A
)  =  X )
4441, 43eleqtrrd 2552 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  z  e.  ( ( cls `  J
) `  A )
)
4520adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  D  e.  ( *Met `  X
) )
46 simprrl 782 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  n  e.  NN )
4746nnrpd 11362 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  n  e.  RR+ )
4847rpreccld 11374 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  ( 1  /  n )  e.  RR+ )
4948rpxrd 11365 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  ( 1  /  n )  e.  RR* )
501blopn 21593 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  X  /\  ( 1  /  n
)  e.  RR* )  ->  ( z ( ball `  D ) ( 1  /  n ) )  e.  J )
5145, 41, 49, 50syl3anc 1292 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  ( z (
ball `  D )
( 1  /  n
) )  e.  J
)
52 blcntr 21506 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  X  /\  ( 1  /  n
)  e.  RR+ )  ->  z  e.  ( z ( ball `  D
) ( 1  /  n ) ) )
5345, 41, 48, 52syl3anc 1292 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  z  e.  ( z ( ball `  D
) ( 1  /  n ) ) )
54 eqid 2471 . . . . . . . . . . 11  |-  U. J  =  U. J
5554clsndisj 20168 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  C_  U. J  /\  z  e.  ( ( cls `  J ) `  A ) )  /\  ( ( z (
ball `  D )
( 1  /  n
) )  e.  J  /\  z  e.  (
z ( ball `  D
) ( 1  /  n ) ) ) )  ->  ( (
z ( ball `  D
) ( 1  /  n ) )  i^i 
A )  =/=  (/) )
5631, 36, 44, 51, 53, 55syl32anc 1300 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  ( ( z ( ball `  D
) ( 1  /  n ) )  i^i 
A )  =/=  (/) )
57 n0 3732 . . . . . . . . 9  |-  ( ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A )  =/=  (/) 
<->  E. t  t  e.  ( ( z (
ball `  D )
( 1  /  n
) )  i^i  A
) )
5856, 57sylib 201 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  E. t  t  e.  ( ( z (
ball `  D )
( 1  /  n
) )  i^i  A
) )
5946adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  n  e.  NN )
60 inss2 3644 . . . . . . . . . . . 12  |-  ( ( z ( ball `  D
) ( 1  /  n ) )  i^i 
A )  C_  A
61 simpr 468 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )
6260, 61sseldi 3416 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  t  e.  A
)
63 eqidd 2472 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  ( t (
ball `  D )
( 1  /  n
) )  =  ( t ( ball `  D
) ( 1  /  n ) ) )
64 oveq2 6316 . . . . . . . . . . . . . 14  |-  ( x  =  n  ->  (
1  /  x )  =  ( 1  /  n ) )
6564oveq2d 6324 . . . . . . . . . . . . 13  |-  ( x  =  n  ->  (
y ( ball `  D
) ( 1  /  x ) )  =  ( y ( ball `  D ) ( 1  /  n ) ) )
6665eqeq2d 2481 . . . . . . . . . . . 12  |-  ( x  =  n  ->  (
( t ( ball `  D ) ( 1  /  n ) )  =  ( y (
ball `  D )
( 1  /  x
) )  <->  ( t
( ball `  D )
( 1  /  n
) )  =  ( y ( ball `  D
) ( 1  /  n ) ) ) )
67 oveq1 6315 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  (
y ( ball `  D
) ( 1  /  n ) )  =  ( t ( ball `  D ) ( 1  /  n ) ) )
6867eqeq2d 2481 . . . . . . . . . . . 12  |-  ( y  =  t  ->  (
( t ( ball `  D ) ( 1  /  n ) )  =  ( y (
ball `  D )
( 1  /  n
) )  <->  ( t
( ball `  D )
( 1  /  n
) )  =  ( t ( ball `  D
) ( 1  /  n ) ) ) )
6966, 68rspc2ev 3149 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  t  e.  A  /\  ( t ( ball `  D ) ( 1  /  n ) )  =  ( t (
ball `  D )
( 1  /  n
) ) )  ->  E. x  e.  NN  E. y  e.  A  ( t ( ball `  D
) ( 1  /  n ) )  =  ( y ( ball `  D ) ( 1  /  x ) ) )
7059, 62, 63, 69syl3anc 1292 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  E. x  e.  NN  E. y  e.  A  ( t ( ball `  D
) ( 1  /  n ) )  =  ( y ( ball `  D ) ( 1  /  x ) ) )
71 ovex 6336 . . . . . . . . . . 11  |-  ( t ( ball `  D
) ( 1  /  n ) )  e. 
_V
72 eqeq1 2475 . . . . . . . . . . . 12  |-  ( z  =  ( t (
ball `  D )
( 1  /  n
) )  ->  (
z  =  ( y ( ball `  D
) ( 1  /  x ) )  <->  ( t
( ball `  D )
( 1  /  n
) )  =  ( y ( ball `  D
) ( 1  /  x ) ) ) )
73722rexbidv 2897 . . . . . . . . . . 11  |-  ( z  =  ( t (
ball `  D )
( 1  /  n
) )  ->  ( E. x  e.  NN  E. y  e.  A  z  =  ( y (
ball `  D )
( 1  /  x
) )  <->  E. x  e.  NN  E. y  e.  A  ( t (
ball `  D )
( 1  /  n
) )  =  ( y ( ball `  D
) ( 1  /  x ) ) ) )
7415rnmpt2 6425 . . . . . . . . . . 11  |-  ran  (
x  e.  NN , 
y  e.  A  |->  ( y ( ball `  D
) ( 1  /  x ) ) )  =  { z  |  E. x  e.  NN  E. y  e.  A  z  =  ( y (
ball `  D )
( 1  /  x
) ) }
7571, 73, 74elab2 3176 . . . . . . . . . 10  |-  ( ( t ( ball `  D
) ( 1  /  n ) )  e. 
ran  ( x  e.  NN ,  y  e.  A  |->  ( y (
ball `  D )
( 1  /  x
) ) )  <->  E. x  e.  NN  E. y  e.  A  ( t (
ball `  D )
( 1  /  n
) )  =  ( y ( ball `  D
) ( 1  /  x ) ) )
7670, 75sylibr 217 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  ( t (
ball `  D )
( 1  /  n
) )  e.  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) ) )
77 inss1 3643 . . . . . . . . . . 11  |-  ( ( z ( ball `  D
) ( 1  /  n ) )  i^i 
A )  C_  (
z ( ball `  D
) ( 1  /  n ) )
7877, 61sseldi 3416 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  t  e.  ( z ( ball `  D
) ( 1  /  n ) ) )
7945adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  D  e.  ( *Met `  X
) )
8049adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  ( 1  /  n )  e.  RR* )
8141adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  z  e.  X
)
8233adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  A  C_  X
)
8382, 62sseldd 3419 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  t  e.  X
)
84 blcom 21487 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( 1  /  n )  e. 
RR* )  /\  (
z  e.  X  /\  t  e.  X )
)  ->  ( t  e.  ( z ( ball `  D ) ( 1  /  n ) )  <-> 
z  e.  ( t ( ball `  D
) ( 1  /  n ) ) ) )
8579, 80, 81, 83, 84syl22anc 1293 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  ( t  e.  ( z ( ball `  D ) ( 1  /  n ) )  <-> 
z  e.  ( t ( ball `  D
) ( 1  /  n ) ) ) )
8678, 85mpbid 215 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  z  e.  ( t ( ball `  D
) ( 1  /  n ) ) )
87 simprll 780 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  r  e.  RR+ )
8887adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  r  e.  RR+ )
8988rphalfcld 11376 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  ( r  / 
2 )  e.  RR+ )
9089rpxrd 11365 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  ( r  / 
2 )  e.  RR* )
91 simprrr 783 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  ( 1  /  n )  <  (
r  /  2 ) )
9287rphalfcld 11376 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  ( r  / 
2 )  e.  RR+ )
93 rpre 11331 . . . . . . . . . . . . . . 15  |-  ( ( 1  /  n )  e.  RR+  ->  ( 1  /  n )  e.  RR )
94 rpre 11331 . . . . . . . . . . . . . . 15  |-  ( ( r  /  2 )  e.  RR+  ->  ( r  /  2 )  e.  RR )
95 ltle 9740 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  /  n
)  e.  RR  /\  ( r  /  2
)  e.  RR )  ->  ( ( 1  /  n )  < 
( r  /  2
)  ->  ( 1  /  n )  <_ 
( r  /  2
) ) )
9693, 94, 95syl2an 485 . . . . . . . . . . . . . 14  |-  ( ( ( 1  /  n
)  e.  RR+  /\  (
r  /  2 )  e.  RR+ )  ->  (
( 1  /  n
)  <  ( r  /  2 )  -> 
( 1  /  n
)  <_  ( r  /  2 ) ) )
9748, 92, 96syl2anc 673 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  ( ( 1  /  n )  < 
( r  /  2
)  ->  ( 1  /  n )  <_ 
( r  /  2
) ) )
9891, 97mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  ( 1  /  n )  <_  (
r  /  2 ) )
9998adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  ( 1  /  n )  <_  (
r  /  2 ) )
100 ssbl 21516 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  t  e.  X )  /\  (
( 1  /  n
)  e.  RR*  /\  (
r  /  2 )  e.  RR* )  /\  (
1  /  n )  <_  ( r  / 
2 ) )  -> 
( t ( ball `  D ) ( 1  /  n ) ) 
C_  ( t (
ball `  D )
( r  /  2
) ) )
10179, 83, 80, 90, 99, 100syl221anc 1303 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  ( t (
ball `  D )
( 1  /  n
) )  C_  (
t ( ball `  D
) ( r  / 
2 ) ) )
10288rpred 11364 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  r  e.  RR )
103101, 86sseldd 3419 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  z  e.  ( t ( ball `  D
) ( r  / 
2 ) ) )
104 blhalf 21498 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  X
)  /\  t  e.  X )  /\  (
r  e.  RR  /\  z  e.  ( t
( ball `  D )
( r  /  2
) ) ) )  ->  ( t (
ball `  D )
( r  /  2
) )  C_  (
z ( ball `  D
) r ) )
10579, 83, 102, 103, 104syl22anc 1293 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  ( t (
ball `  D )
( r  /  2
) )  C_  (
z ( ball `  D
) r ) )
106 simprlr 781 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  ( z (
ball `  D )
r )  C_  u
)
107106adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  ( z (
ball `  D )
r )  C_  u
)
108105, 107sstrd 3428 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  ( t (
ball `  D )
( r  /  2
) )  C_  u
)
109101, 108sstrd 3428 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  ( t (
ball `  D )
( 1  /  n
) )  C_  u
)
110 eleq2 2538 . . . . . . . . . . 11  |-  ( w  =  ( t (
ball `  D )
( 1  /  n
) )  ->  (
z  e.  w  <->  z  e.  ( t ( ball `  D ) ( 1  /  n ) ) ) )
111 sseq1 3439 . . . . . . . . . . 11  |-  ( w  =  ( t (
ball `  D )
( 1  /  n
) )  ->  (
w  C_  u  <->  ( t
( ball `  D )
( 1  /  n
) )  C_  u
) )
112110, 111anbi12d 725 . . . . . . . . . 10  |-  ( w  =  ( t (
ball `  D )
( 1  /  n
) )  ->  (
( z  e.  w  /\  w  C_  u )  <-> 
( z  e.  ( t ( ball `  D
) ( 1  /  n ) )  /\  ( t ( ball `  D ) ( 1  /  n ) ) 
C_  u ) ) )
113112rspcev 3136 . . . . . . . . 9  |-  ( ( ( t ( ball `  D ) ( 1  /  n ) )  e.  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D
) ( 1  /  x ) ) )  /\  ( z  e.  ( t ( ball `  D ) ( 1  /  n ) )  /\  ( t (
ball `  D )
( 1  /  n
) )  C_  u
) )  ->  E. w  e.  ran  ( x  e.  NN ,  y  e.  A  |->  ( y (
ball `  D )
( 1  /  x
) ) ) ( z  e.  w  /\  w  C_  u ) )
11476, 86, 109, 113syl12anc 1290 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  /\  t  e.  ( ( z ( ball `  D ) ( 1  /  n ) )  i^i  A ) )  ->  E. w  e.  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) ) ( z  e.  w  /\  w  C_  u ) )
11558, 114exlimddv 1789 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( ( r  e.  RR+  /\  ( z (
ball `  D )
r )  C_  u
)  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) ) )  ->  E. w  e.  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) ) ( z  e.  w  /\  w  C_  u ) )
116115anassrs 660 . . . . . 6  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( r  e.  RR+  /\  ( z ( ball `  D ) r ) 
C_  u ) )  /\  ( n  e.  NN  /\  ( 1  /  n )  < 
( r  /  2
) ) )  ->  E. w  e.  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) ) ( z  e.  w  /\  w  C_  u ) )
11730, 116rexlimddv 2875 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  /\  ( r  e.  RR+  /\  ( z ( ball `  D ) r ) 
C_  u ) )  ->  E. w  e.  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) ) ( z  e.  w  /\  w  C_  u ) )
11824, 117rexlimddv 2875 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( A  C_  X  /\  A  ~<_  om 
/\  ( ( cls `  J ) `  A
)  =  X ) )  /\  ( u  e.  J  /\  z  e.  u ) )  ->  E. w  e.  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) ) ( z  e.  w  /\  w  C_  u ) )
119118ralrimivva 2814 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  ->  A. u  e.  J  A. z  e.  u  E. w  e.  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) ) ( z  e.  w  /\  w  C_  u ) )
120 basgen2 20082 . . 3  |-  ( ( J  e.  Top  /\  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) )  C_  J  /\  A. u  e.  J  A. z  e.  u  E. w  e.  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D
) ( 1  /  x ) ) ) ( z  e.  w  /\  w  C_  u ) )  ->  ( topGen ` 
ran  ( x  e.  NN ,  y  e.  A  |->  ( y (
ball `  D )
( 1  /  x
) ) ) )  =  J )
1213, 19, 119, 120syl3anc 1292 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  -> 
( topGen `  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D
) ( 1  /  x ) ) ) )  =  J )
122121, 3eqeltrd 2549 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  -> 
( topGen `  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D
) ( 1  /  x ) ) ) )  e.  Top )
123 tgclb 20063 . . . 4  |-  ( ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) )  e.  TopBases  <->  ( topGen ` 
ran  ( x  e.  NN ,  y  e.  A  |->  ( y (
ball `  D )
( 1  /  x
) ) ) )  e.  Top )
124122, 123sylibr 217 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  ->  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) )  e.  TopBases )
125 omelon 8169 . . . . . 6  |-  om  e.  On
126 simpr2 1037 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  ->  A  ~<_  om )
127 nnex 10637 . . . . . . . . 9  |-  NN  e.  _V
128127xpdom2 7685 . . . . . . . 8  |-  ( A  ~<_  om  ->  ( NN  X.  A )  ~<_  ( NN 
X.  om ) )
129126, 128syl 17 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  -> 
( NN  X.  A
)  ~<_  ( NN  X.  om ) )
130 nnenom 12231 . . . . . . . . 9  |-  NN  ~~  om
131 omex 8166 . . . . . . . . . 10  |-  om  e.  _V
132131enref 7620 . . . . . . . . 9  |-  om  ~~  om
133 xpen 7753 . . . . . . . . 9  |-  ( ( NN  ~~  om  /\  om 
~~  om )  ->  ( NN  X.  om )  ~~  ( om  X.  om )
)
134130, 132, 133mp2an 686 . . . . . . . 8  |-  ( NN 
X.  om )  ~~  ( om  X.  om )
135 xpomen 8464 . . . . . . . 8  |-  ( om 
X.  om )  ~~  om
136134, 135entri 7641 . . . . . . 7  |-  ( NN 
X.  om )  ~~  om
137 domentr 7646 . . . . . . 7  |-  ( ( ( NN  X.  A
)  ~<_  ( NN  X.  om )  /\  ( NN  X.  om )  ~~  om )  ->  ( NN  X.  A )  ~<_  om )
138129, 136, 137sylancl 675 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  -> 
( NN  X.  A
)  ~<_  om )
139 ondomen 8486 . . . . . 6  |-  ( ( om  e.  On  /\  ( NN  X.  A
)  ~<_  om )  ->  ( NN  X.  A )  e. 
dom  card )
140125, 138, 139sylancr 676 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  -> 
( NN  X.  A
)  e.  dom  card )
141 ffn 5739 . . . . . . 7  |-  ( ( x  e.  NN , 
y  e.  A  |->  ( y ( ball `  D
) ( 1  /  x ) ) ) : ( NN  X.  A ) --> J  -> 
( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) )  Fn  ( NN 
X.  A ) )
14217, 141syl 17 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  -> 
( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) )  Fn  ( NN 
X.  A ) )
143 dffn4 5812 . . . . . 6  |-  ( ( x  e.  NN , 
y  e.  A  |->  ( y ( ball `  D
) ( 1  /  x ) ) )  Fn  ( NN  X.  A )  <->  ( x  e.  NN ,  y  e.  A  |->  ( y (
ball `  D )
( 1  /  x
) ) ) : ( NN  X.  A
) -onto-> ran  ( x  e.  NN ,  y  e.  A  |->  ( y (
ball `  D )
( 1  /  x
) ) ) )
144142, 143sylib 201 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  -> 
( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) ) : ( NN 
X.  A ) -onto-> ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) ) )
145 fodomnum 8506 . . . . 5  |-  ( ( NN  X.  A )  e.  dom  card  ->  ( ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) ) : ( NN 
X.  A ) -onto-> ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) )  ->  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D
) ( 1  /  x ) ) )  ~<_  ( NN  X.  A
) ) )
146140, 144, 145sylc 61 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  ->  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) )  ~<_  ( NN  X.  A ) )
147 domtr 7640 . . . 4  |-  ( ( ran  ( x  e.  NN ,  y  e.  A  |->  ( y (
ball `  D )
( 1  /  x
) ) )  ~<_  ( NN  X.  A )  /\  ( NN  X.  A )  ~<_  om )  ->  ran  ( x  e.  NN ,  y  e.  A  |->  ( y (
ball `  D )
( 1  /  x
) ) )  ~<_  om )
148146, 138, 147syl2anc 673 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  ->  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D ) ( 1  /  x ) ) )  ~<_  om )
149 2ndci 20540 . . 3  |-  ( ( ran  ( x  e.  NN ,  y  e.  A  |->  ( y (
ball `  D )
( 1  /  x
) ) )  e.  TopBases 
/\  ran  ( x  e.  NN ,  y  e.  A  |->  ( y (
ball `  D )
( 1  /  x
) ) )  ~<_  om )  ->  ( topGen ` 
ran  ( x  e.  NN ,  y  e.  A  |->  ( y (
ball `  D )
( 1  /  x
) ) ) )  e.  2ndc )
150124, 148, 149syl2anc 673 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  -> 
( topGen `  ran  ( x  e.  NN ,  y  e.  A  |->  ( y ( ball `  D
) ( 1  /  x ) ) ) )  e.  2ndc )
151121, 150eqeltrrd 2550 1  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  A  ~<_  om  /\  ( ( cls `  J
) `  A )  =  X ) )  ->  J  e.  2ndc )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452   E.wex 1671    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757    i^i cin 3389    C_ wss 3390   (/)c0 3722   U.cuni 4190   class class class wbr 4395    X. cxp 4837   dom cdm 4839   ran crn 4840   Oncon0 5430    Fn wfn 5584   -->wf 5585   -onto->wfo 5587   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310   omcom 6711    ~~ cen 7584    ~<_ cdom 7585   cardccrd 8387   RRcr 9556   0cc0 9557   1c1 9558   RR*cxr 9692    < clt 9693    <_ cle 9694    / cdiv 10291   NNcn 10631   2c2 10681   RR+crp 11325   topGenctg 15414   *Metcxmt 19032   ballcbl 19034   MetOpencmopn 19037   Topctop 19994   TopBasesctb 19997   clsccl 20110   2ndcc2ndc 20530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-acn 8394  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-topgen 15420  df-psmet 19039  df-xmet 19040  df-bl 19042  df-mopn 19043  df-top 19998  df-bases 19999  df-topon 20000  df-cld 20111  df-ntr 20112  df-cls 20113  df-2ndc 20532
This theorem is referenced by:  met2ndc  21616
  Copyright terms: Public domain W3C validator