MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mertenslem2 Structured version   Unicode version

Theorem mertenslem2 13705
Description: Lemma for mertens 13706. (Contributed by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
mertens.1  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )
mertens.2  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  A ) )
mertens.3  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
mertens.4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
mertens.5  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
mertens.6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `
 ( k  -  j ) ) ) )
mertens.7  |-  ( ph  ->  seq 0 (  +  ,  K )  e. 
dom 
~~>  )
mertens.8  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
mertens.9  |-  ( ph  ->  E  e.  RR+ )
mertens.10  |-  T  =  { z  |  E. n  e.  ( 0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
mertens.11  |-  ( ps  <->  ( s  e.  NN  /\  A. n  e.  ( ZZ>= `  s ) ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
Assertion
Ref Expression
mertenslem2  |-  ( ph  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
Distinct variable groups:    j, m, n, s, y, z, B   
j, k, G, m, n, s, y, z    ph, j, k, m, y, z    A, k, m, n, s, y    j, E, k, m, n, s, y, z    j, K, k, m, n, s, y, z    j, F, m, n, y    ps, j, k, m, n, y, z    T, j, k, m, n, y, z    k, H, m, y    ph, n, s
Allowed substitution hints:    ps( s)    A( z, j)    B( k)    T( s)    F( z, k, s)    H( z, j, n, s)

Proof of Theorem mertenslem2
Dummy variables  t  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11141 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 10916 . . 3  |-  ( ph  ->  1  e.  ZZ )
3 mertens.9 . . . . 5  |-  ( ph  ->  E  e.  RR+ )
43rphalfcld 11293 . . . 4  |-  ( ph  ->  ( E  /  2
)  e.  RR+ )
5 nn0uz 11140 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
6 0zd 10897 . . . . . 6  |-  ( ph  ->  0  e.  ZZ )
7 eqidd 2458 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( K `  j ) )
8 mertens.2 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  A ) )
9 mertens.3 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
109abscld 13278 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  A )  e.  RR )
118, 10eqeltrd 2545 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  e.  RR )
12 mertens.7 . . . . . 6  |-  ( ph  ->  seq 0 (  +  ,  K )  e. 
dom 
~~>  )
135, 6, 7, 11, 12isumrecl 13591 . . . . 5  |-  ( ph  -> 
sum_ j  e.  NN0  ( K `  j )  e.  RR )
149absge0d 13286 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  0  <_  ( abs `  A ) )
1514, 8breqtrrd 4482 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  0  <_  ( K `  j ) )
165, 6, 7, 11, 12, 15isumge0 13592 . . . . 5  |-  ( ph  ->  0  <_  sum_ j  e. 
NN0  ( K `  j ) )
1713, 16ge0p1rpd 11307 . . . 4  |-  ( ph  ->  ( sum_ j  e.  NN0  ( K `  j )  +  1 )  e.  RR+ )
184, 17rpdivcld 11298 . . 3  |-  ( ph  ->  ( ( E  / 
2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  e.  RR+ )
19 eqidd 2458 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  (  seq 0 (  +  ,  G ) `  m
)  =  (  seq 0 (  +  ,  G ) `  m
) )
20 mertens.4 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
21 mertens.5 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
22 mertens.8 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
235, 6, 20, 21, 22isumclim2 13584 . . 3  |-  ( ph  ->  seq 0 (  +  ,  G )  ~~>  sum_ k  e.  NN0  B )
241, 2, 18, 19, 23climi2 13345 . 2  |-  ( ph  ->  E. s  e.  NN  A. m  e.  ( ZZ>= `  s ) ( abs `  ( (  seq 0
(  +  ,  G
) `  m )  -  sum_ k  e.  NN0  B ) )  <  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) ) )
25 eluznn 11177 . . . . . . . 8  |-  ( ( s  e.  NN  /\  m  e.  ( ZZ>= `  s ) )  ->  m  e.  NN )
2620, 21eqeltrd 2545 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
275, 6, 26serf 12137 . . . . . . . . . . . 12  |-  ( ph  ->  seq 0 (  +  ,  G ) : NN0 --> CC )
28 nnnn0 10823 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  m  e.  NN0 )
29 ffvelrn 6030 . . . . . . . . . . . 12  |-  ( (  seq 0 (  +  ,  G ) : NN0 --> CC  /\  m  e.  NN0 )  ->  (  seq 0 (  +  ,  G ) `  m
)  e.  CC )
3027, 28, 29syl2an 477 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  (  seq 0 (  +  ,  G ) `  m
)  e.  CC )
315, 6, 20, 21, 22isumcl 13587 . . . . . . . . . . . 12  |-  ( ph  -> 
sum_ k  e.  NN0  B  e.  CC )
3231adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  NN0  B  e.  CC )
3330, 32abssubd 13295 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( abs `  ( (  seq 0
(  +  ,  G
) `  m )  -  sum_ k  e.  NN0  B ) )  =  ( abs `  ( sum_ k  e.  NN0  B  -  (  seq 0 (  +  ,  G ) `  m ) ) ) )
34 eqid 2457 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  ( m  +  1
) )  =  (
ZZ>= `  ( m  + 
1 ) )
3528adantl 466 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  m  e. 
NN0 )
36 peano2nn0 10857 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN0  ->  ( m  +  1 )  e. 
NN0 )
3735, 36syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( m  +  1 )  e. 
NN0 )
3837nn0zd 10988 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( m  +  1 )  e.  ZZ )
39 simpll 753 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( ZZ>= `  ( m  +  1 ) ) )  ->  ph )
40 eluznn0 11176 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( m  +  1
) ) )  -> 
k  e.  NN0 )
4137, 40sylan 471 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( ZZ>= `  ( m  +  1 ) ) )  ->  k  e.  NN0 )
4239, 41, 20syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( ZZ>= `  ( m  +  1 ) ) )  ->  ( G `  k )  =  B )
4339, 41, 21syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( ZZ>= `  ( m  +  1 ) ) )  ->  B  e.  CC )
4422adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  seq 0
(  +  ,  G
)  e.  dom  ~~>  )
4526adantlr 714 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
465, 37, 45iserex 13490 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  (  seq 0 (  +  ,  G )  e.  dom  ~~>  <->  seq ( m  +  1
) (  +  ,  G )  e.  dom  ~~>  ) )
4744, 46mpbid 210 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  seq (
m  +  1 ) (  +  ,  G
)  e.  dom  ~~>  )
4834, 38, 42, 43, 47isumcl 13587 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  ( m  +  1 ) ) B  e.  CC )
4930, 48pncan2d 9952 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( (  seq 0 (  +  ,  G ) `
 m )  + 
sum_ k  e.  (
ZZ>= `  ( m  + 
1 ) ) B )  -  (  seq 0 (  +  ,  G ) `  m
) )  =  sum_ k  e.  ( ZZ>= `  ( m  +  1
) ) B )
5020adantlr 714 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
5121adantlr 714 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  NN0 )  ->  B  e.  CC )
525, 34, 37, 50, 51, 44isumsplit 13663 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  NN0  B  =  (
sum_ k  e.  ( 0 ... ( ( m  +  1 )  -  1 ) ) B  +  sum_ k  e.  ( ZZ>= `  ( m  +  1 ) ) B ) )
53 nncn 10564 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  ->  m  e.  CC )
5453adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  CC )
55 ax-1cn 9567 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  CC
56 pncan 9845 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  CC  /\  1  e.  CC )  ->  ( ( m  + 
1 )  -  1 )  =  m )
5754, 55, 56sylancl 662 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( m  +  1 )  -  1 )  =  m )
5857oveq2d 6312 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0 ... ( ( m  +  1 )  - 
1 ) )  =  ( 0 ... m
) )
5958sumeq1d 13534 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) B  =  sum_ k  e.  ( 0 ... m ) B )
60 simpl 457 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  NN )  ->  ph )
61 elfznn0 11796 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( 0 ... m )  ->  k  e.  NN0 )
6260, 61, 20syl2an 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... m
) )  ->  ( G `  k )  =  B )
6335, 5syl6eleq 2555 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ( ZZ>= `  0 )
)
6460, 61, 21syl2an 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... m
) )  ->  B  e.  CC )
6562, 63, 64fsumser 13563 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  ( 0 ... m
) B  =  (  seq 0 (  +  ,  G ) `  m ) )
6659, 65eqtrd 2498 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) B  =  (  seq 0 (  +  ,  G ) `  m ) )
6766oveq1d 6311 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( sum_ k  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) B  +  sum_ k  e.  (
ZZ>= `  ( m  + 
1 ) ) B )  =  ( (  seq 0 (  +  ,  G ) `  m )  +  sum_ k  e.  ( ZZ>= `  ( m  +  1
) ) B ) )
6852, 67eqtrd 2498 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  NN0  B  =  ( (  seq 0 (  +  ,  G ) `
 m )  + 
sum_ k  e.  (
ZZ>= `  ( m  + 
1 ) ) B ) )
6968oveq1d 6311 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( sum_ k  e.  NN0  B  -  (  seq 0 (  +  ,  G ) `  m ) )  =  ( ( (  seq 0 (  +  ,  G ) `  m
)  +  sum_ k  e.  ( ZZ>= `  ( m  +  1 ) ) B )  -  (  seq 0 (  +  ,  G ) `  m
) ) )
7042sumeq2dv 13536 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  ( m  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( m  +  1 ) ) B )
7149, 69, 703eqtr4d 2508 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( sum_ k  e.  NN0  B  -  (  seq 0 (  +  ,  G ) `  m ) )  = 
sum_ k  e.  (
ZZ>= `  ( m  + 
1 ) ) ( G `  k ) )
7271fveq2d 5876 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( abs `  ( sum_ k  e.  NN0  B  -  (  seq 0
(  +  ,  G
) `  m )
) )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( m  +  1 ) ) ( G `  k
) ) )
7333, 72eqtrd 2498 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( abs `  ( (  seq 0
(  +  ,  G
) `  m )  -  sum_ k  e.  NN0  B ) )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( m  +  1 ) ) ( G `  k
) ) )
7473breq1d 4466 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( abs `  ( (  seq 0 (  +  ,  G ) `  m )  -  sum_ k  e.  NN0  B ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <->  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( m  + 
1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
7525, 74sylan2 474 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  NN  /\  m  e.  ( ZZ>= `  s )
) )  ->  (
( abs `  (
(  seq 0 (  +  ,  G ) `  m )  -  sum_ k  e.  NN0  B ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <->  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( m  + 
1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
7675anassrs 648 . . . . . 6  |-  ( ( ( ph  /\  s  e.  NN )  /\  m  e.  ( ZZ>= `  s )
)  ->  ( ( abs `  ( (  seq 0 (  +  ,  G ) `  m
)  -  sum_ k  e.  NN0  B ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <-> 
( abs `  sum_ k  e.  ( ZZ>= `  ( m  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
7776ralbidva 2893 . . . . 5  |-  ( (
ph  /\  s  e.  NN )  ->  ( A. m  e.  ( ZZ>= `  s ) ( abs `  ( (  seq 0
(  +  ,  G
) `  m )  -  sum_ k  e.  NN0  B ) )  <  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) )  <->  A. m  e.  ( ZZ>= `  s )
( abs `  sum_ k  e.  ( ZZ>= `  ( m  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
78 oveq1 6303 . . . . . . . . . 10  |-  ( m  =  n  ->  (
m  +  1 )  =  ( n  + 
1 ) )
7978fveq2d 5876 . . . . . . . . 9  |-  ( m  =  n  ->  ( ZZ>=
`  ( m  + 
1 ) )  =  ( ZZ>= `  ( n  +  1 ) ) )
8079sumeq1d 13534 . . . . . . . 8  |-  ( m  =  n  ->  sum_ k  e.  ( ZZ>= `  ( m  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )
8180fveq2d 5876 . . . . . . 7  |-  ( m  =  n  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( m  + 
1 ) ) ( G `  k ) )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
8281breq1d 4466 . . . . . 6  |-  ( m  =  n  ->  (
( abs `  sum_ k  e.  ( ZZ>= `  ( m  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <-> 
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
8382cbvralv 3084 . . . . 5  |-  ( A. m  e.  ( ZZ>= `  s ) ( abs `  sum_ k  e.  (
ZZ>= `  ( m  + 
1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <->  A. n  e.  ( ZZ>= `  s )
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
8477, 83syl6bb 261 . . . 4  |-  ( (
ph  /\  s  e.  NN )  ->  ( A. m  e.  ( ZZ>= `  s ) ( abs `  ( (  seq 0
(  +  ,  G
) `  m )  -  sum_ k  e.  NN0  B ) )  <  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) )  <->  A. n  e.  ( ZZ>= `  s )
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
85 mertens.11 . . . . . 6  |-  ( ps  <->  ( s  e.  NN  /\  A. n  e.  ( ZZ>= `  s ) ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
86 0zd 10897 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  0  e.  ZZ )
874adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( E  /  2
)  e.  RR+ )
8885simplbi 460 . . . . . . . . . . . . 13  |-  ( ps 
->  s  e.  NN )
8988adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  s  e.  NN )
9089nnrpd 11280 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  s  e.  RR+ )
9187, 90rpdivcld 11298 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  ( ( E  / 
2 )  /  s
)  e.  RR+ )
92 mertens.10 . . . . . . . . . . . . 13  |-  T  =  { z  |  E. n  e.  ( 0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
93 eqid 2457 . . . . . . . . . . . . . . . . . 18  |-  ( ZZ>= `  ( n  +  1
) )  =  (
ZZ>= `  ( n  + 
1 ) )
94 elfznn0 11796 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( 0 ... ( s  -  1 ) )  ->  n  e.  NN0 )
9594adantl 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  n  e.  NN0 )
96 peano2nn0 10857 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  NN0  ->  ( n  +  1 )  e. 
NN0 )
9795, 96syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  ( n  +  1 )  e. 
NN0 )
9897nn0zd 10988 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  ( n  +  1 )  e.  ZZ )
99 eqidd 2458 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... (
s  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( G `  k )  =  ( G `  k ) )
100 simplll 759 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... (
s  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ph )
101 eluznn0 11176 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( n  +  1
) ) )  -> 
k  e.  NN0 )
10297, 101sylan 471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... (
s  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  k  e.  NN0 )
103100, 102, 26syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... (
s  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( G `  k )  e.  CC )
10422ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  seq 0
(  +  ,  G
)  e.  dom  ~~>  )
105 simpll 753 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  ph )
106105, 26sylan 471 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... (
s  -  1 ) ) )  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
1075, 97, 106iserex 13490 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  (  seq 0 (  +  ,  G )  e.  dom  ~~>  <->  seq ( n  +  1
) (  +  ,  G )  e.  dom  ~~>  ) )
108104, 107mpbid 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  seq (
n  +  1 ) (  +  ,  G
)  e.  dom  ~~>  )
10993, 98, 99, 103, 108isumcl 13587 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  e.  CC )
110109abscld 13278 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  e.  RR )
111 eleq1a 2540 . . . . . . . . . . . . . . . 16  |-  ( ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )  e.  RR  ->  ( z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )  ->  z  e.  RR ) )
112110, 111syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  ( z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  ->  z  e.  RR ) )
113112rexlimdva 2949 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  ( E. n  e.  ( 0 ... (
s  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )  ->  z  e.  RR ) )
114113abssdv 3570 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  { z  |  E. n  e.  ( 0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }  C_  RR )
11592, 114syl5eqss 3543 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  T  C_  RR )
116 fzfid 12085 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ps )  ->  ( 0 ... (
s  -  1 ) )  e.  Fin )
117 abrexfi 7838 . . . . . . . . . . . . . . 15  |-  ( ( 0 ... ( s  -  1 ) )  e.  Fin  ->  { z  |  E. n  e.  ( 0 ... (
s  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) }  e.  Fin )
118116, 117syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  { z  |  E. n  e.  ( 0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }  e.  Fin )
11992, 118syl5eqel 2549 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  T  e.  Fin )
120 nnm1nn0 10858 . . . . . . . . . . . . . . . . . . 19  |-  ( s  e.  NN  ->  (
s  -  1 )  e.  NN0 )
12189, 120syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ps )  ->  ( s  -  1 )  e.  NN0 )
122121, 5syl6eleq 2555 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ps )  ->  ( s  -  1 )  e.  ( ZZ>= ` 
0 ) )
123 eluzfz1 11718 . . . . . . . . . . . . . . . . 17  |-  ( ( s  -  1 )  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... (
s  -  1 ) ) )
124122, 123syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ps )  ->  0  e.  ( 0 ... ( s  - 
1 ) ) )
125 nnnn0 10823 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  NN  ->  k  e.  NN0 )
126125, 20sylan2 474 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  B )
127126sumeq2dv 13536 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  -> 
sum_ k  e.  NN  ( G `  k )  =  sum_ k  e.  NN  B )
128127adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  NN  ( G `  k )  =  sum_ k  e.  NN  B )
129128fveq2d 5876 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ps )  ->  ( abs `  sum_ k  e.  NN  ( G `  k )
)  =  ( abs `  sum_ k  e.  NN  B ) )
130129eqcomd 2465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ps )  ->  ( abs `  sum_ k  e.  NN  B
)  =  ( abs `  sum_ k  e.  NN  ( G `  k ) ) )
131 oveq1 6303 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  0  ->  (
n  +  1 )  =  ( 0  +  1 ) )
132 0p1e1 10668 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 0  +  1 )  =  1
133131, 132syl6eq 2514 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  0  ->  (
n  +  1 )  =  1 )
134133fveq2d 5876 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  0  ->  ( ZZ>=
`  ( n  + 
1 ) )  =  ( ZZ>= `  1 )
)
135134, 1syl6eqr 2516 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  0  ->  ( ZZ>=
`  ( n  + 
1 ) )  =  NN )
136135sumeq1d 13534 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  0  ->  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  =  sum_ k  e.  NN  ( G `  k ) )
137136fveq2d 5876 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  0  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  =  ( abs `  sum_ k  e.  NN  ( G `  k ) ) )
138137eqeq2d 2471 . . . . . . . . . . . . . . . . 17  |-  ( n  =  0  ->  (
( abs `  sum_ k  e.  NN  B
)  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <->  ( abs `  sum_ k  e.  NN  B
)  =  ( abs `  sum_ k  e.  NN  ( G `  k ) ) ) )
139138rspcev 3210 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  ( 0 ... ( s  - 
1 ) )  /\  ( abs `  sum_ k  e.  NN  B )  =  ( abs `  sum_ k  e.  NN  ( G `  k )
) )  ->  E. n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ k  e.  NN  B
)  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
140124, 130, 139syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ps )  ->  E. n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ k  e.  NN  B
)  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
141 fvex 5882 . . . . . . . . . . . . . . . 16  |-  ( abs `  sum_ k  e.  NN  B )  e.  _V
142 eqeq1 2461 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( abs `  sum_ k  e.  NN  B
)  ->  ( z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <-> 
( abs `  sum_ k  e.  NN  B
)  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) ) )
143142rexbidv 2968 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( abs `  sum_ k  e.  NN  B
)  ->  ( E. n  e.  ( 0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <->  E. n  e.  (
0 ... ( s  - 
1 ) ) ( abs `  sum_ k  e.  NN  B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
144141, 143, 92elab2 3249 . . . . . . . . . . . . . . 15  |-  ( ( abs `  sum_ k  e.  NN  B )  e.  T  <->  E. n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ k  e.  NN  B
)  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
145140, 144sylibr 212 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  ( abs `  sum_ k  e.  NN  B
)  e.  T )
146 ne0i 3799 . . . . . . . . . . . . . 14  |-  ( ( abs `  sum_ k  e.  NN  B )  e.  T  ->  T  =/=  (/) )
147145, 146syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  T  =/=  (/) )
148 ltso 9682 . . . . . . . . . . . . . 14  |-  <  Or  RR
149 fisupcl 7945 . . . . . . . . . . . . . 14  |-  ( (  <  Or  RR  /\  ( T  e.  Fin  /\  T  =/=  (/)  /\  T  C_  RR ) )  ->  sup ( T ,  RR ,  <  )  e.  T
)
150148, 149mpan 670 . . . . . . . . . . . . 13  |-  ( ( T  e.  Fin  /\  T  =/=  (/)  /\  T  C_  RR )  ->  sup ( T ,  RR ,  <  )  e.  T )
151119, 147, 115, 150syl3anc 1228 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  sup ( T ,  RR ,  <  )  e.  T )
152115, 151sseldd 3500 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  sup ( T ,  RR ,  <  )  e.  RR )
153 0red 9614 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  0  e.  RR )
154125, 21sylan2 474 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  B  e.  CC )
155 1nn0 10832 . . . . . . . . . . . . . . . . . 18  |-  1  e.  NN0
156155a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  e.  NN0 )
1575, 156, 26iserex 13490 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  (  seq 0 (  +  ,  G )  e.  dom  ~~>  <->  seq 1
(  +  ,  G
)  e.  dom  ~~>  ) )
15822, 157mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ph  ->  seq 1 (  +  ,  G )  e. 
dom 
~~>  )
1591, 2, 126, 154, 158isumcl 13587 . . . . . . . . . . . . . 14  |-  ( ph  -> 
sum_ k  e.  NN  B  e.  CC )
160159adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  NN  B  e.  CC )
161160abscld 13278 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( abs `  sum_ k  e.  NN  B
)  e.  RR )
162160absge0d 13286 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  0  <_  ( abs ` 
sum_ k  e.  NN  B ) )
163 fimaxre2 10511 . . . . . . . . . . . . . . 15  |-  ( ( T  C_  RR  /\  T  e.  Fin )  ->  E. z  e.  RR  A. w  e.  T  w  <_  z
)
164115, 119, 163syl2anc 661 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  E. z  e.  RR  A. w  e.  T  w  <_  z )
165115, 147, 1643jca 1176 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( T  C_  RR  /\  T  =/=  (/)  /\  E. z  e.  RR  A. w  e.  T  w  <_  z ) )
166 suprub 10524 . . . . . . . . . . . . 13  |-  ( ( ( T  C_  RR  /\  T  =/=  (/)  /\  E. z  e.  RR  A. w  e.  T  w  <_  z )  /\  ( abs `  sum_ k  e.  NN  B )  e.  T
)  ->  ( abs ` 
sum_ k  e.  NN  B )  <_  sup ( T ,  RR ,  <  ) )
167165, 145, 166syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( abs `  sum_ k  e.  NN  B
)  <_  sup ( T ,  RR ,  <  ) )
168153, 161, 152, 162, 167letrd 9756 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  0  <_  sup ( T ,  RR ,  <  ) )
169152, 168ge0p1rpd 11307 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  ( sup ( T ,  RR ,  <  )  +  1 )  e.  RR+ )
17091, 169rpdivcld 11298 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  ( ( ( E  /  2 )  / 
s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) )  e.  RR+ )
171 fveq2 5872 . . . . . . . . . . 11  |-  ( n  =  m  ->  ( K `  n )  =  ( K `  m ) )
172 eqid 2457 . . . . . . . . . . 11  |-  ( n  e.  NN0  |->  ( K `
 n ) )  =  ( n  e. 
NN0  |->  ( K `  n ) )
173 fvex 5882 . . . . . . . . . . 11  |-  ( K `
 m )  e. 
_V
174171, 172, 173fvmpt 5956 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( ( n  e.  NN0  |->  ( K `
 n ) ) `
 m )  =  ( K `  m
) )
175174adantl 466 . . . . . . . . 9  |-  ( ( ( ph  /\  ps )  /\  m  e.  NN0 )  ->  ( ( n  e.  NN0  |->  ( K `
 n ) ) `
 m )  =  ( K `  m
) )
176 nn0ex 10822 . . . . . . . . . . . . 13  |-  NN0  e.  _V
177176mptex 6144 . . . . . . . . . . . 12  |-  ( n  e.  NN0  |->  ( K `
 n ) )  e.  _V
178177a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( n  e.  NN0  |->  ( K `  n ) )  e.  _V )
179 elnn0uz 11143 . . . . . . . . . . . . . 14  |-  ( j  e.  NN0  <->  j  e.  (
ZZ>= `  0 ) )
180 fveq2 5872 . . . . . . . . . . . . . . . 16  |-  ( n  =  j  ->  ( K `  n )  =  ( K `  j ) )
181 fvex 5882 . . . . . . . . . . . . . . . 16  |-  ( K `
 j )  e. 
_V
182180, 172, 181fvmpt 5956 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  ( ( n  e.  NN0  |->  ( K `
 n ) ) `
 j )  =  ( K `  j
) )
183182adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( K `
 n ) ) `
 j )  =  ( K `  j
) )
184179, 183sylan2br 476 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( ZZ>= `  0 )
)  ->  ( (
n  e.  NN0  |->  ( K `
 n ) ) `
 j )  =  ( K `  j
) )
1856, 184seqfeq 12134 . . . . . . . . . . . 12  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( K `  n ) ) )  =  seq 0 (  +  ,  K ) )
186185, 12eqeltrd 2545 . . . . . . . . . . 11  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( K `  n ) ) )  e.  dom  ~~>  )
187183, 8eqtrd 2498 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( K `
 n ) ) `
 j )  =  ( abs `  A
) )
188187, 10eqeltrd 2545 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( K `
 n ) ) `
 j )  e.  RR )
189188recnd 9639 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( K `
 n ) ) `
 j )  e.  CC )
1905, 6, 178, 186, 189serf0 13514 . . . . . . . . . 10  |-  ( ph  ->  ( n  e.  NN0  |->  ( K `  n ) )  ~~>  0 )
191190adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  ( n  e.  NN0  |->  ( K `  n ) )  ~~>  0 )
1925, 86, 170, 175, 191climi0 13346 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  E. t  e.  NN0  A. m  e.  ( ZZ>= `  t ) ( abs `  ( K `  m
) )  <  (
( ( E  / 
2 )  /  s
)  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) )
193 simplll 759 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ps )  /\  t  e.  NN0 )  /\  m  e.  ( ZZ>= `  t )
)  ->  ph )
194 eluznn0 11176 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  NN0  /\  m  e.  ( ZZ>= `  t ) )  ->  m  e.  NN0 )
195194adantll 713 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ps )  /\  t  e.  NN0 )  /\  m  e.  ( ZZ>= `  t )
)  ->  m  e.  NN0 )
19611, 15absidd 13265 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  ( K `  j
) )  =  ( K `  j ) )
197196ralrimiva 2871 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. j  e.  NN0  ( abs `  ( K `
 j ) )  =  ( K `  j ) )
198 fveq2 5872 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  m  ->  ( K `  j )  =  ( K `  m ) )
199198fveq2d 5876 . . . . . . . . . . . . . . . . 17  |-  ( j  =  m  ->  ( abs `  ( K `  j ) )  =  ( abs `  ( K `  m )
) )
200199, 198eqeq12d 2479 . . . . . . . . . . . . . . . 16  |-  ( j  =  m  ->  (
( abs `  ( K `  j )
)  =  ( K `
 j )  <->  ( abs `  ( K `  m
) )  =  ( K `  m ) ) )
201200rspccva 3209 . . . . . . . . . . . . . . 15  |-  ( ( A. j  e.  NN0  ( abs `  ( K `
 j ) )  =  ( K `  j )  /\  m  e.  NN0 )  ->  ( abs `  ( K `  m ) )  =  ( K `  m
) )
202197, 201sylan 471 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( abs `  ( K `  m
) )  =  ( K `  m ) )
203193, 195, 202syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ps )  /\  t  e.  NN0 )  /\  m  e.  ( ZZ>= `  t )
)  ->  ( abs `  ( K `  m
) )  =  ( K `  m ) )
204203breq1d 4466 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ps )  /\  t  e.  NN0 )  /\  m  e.  ( ZZ>= `  t )
)  ->  ( ( abs `  ( K `  m ) )  < 
( ( ( E  /  2 )  / 
s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) )  <->  ( K `  m )  <  (
( ( E  / 
2 )  /  s
)  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )
205204ralbidva 2893 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ps )  /\  t  e.  NN0 )  ->  ( A. m  e.  ( ZZ>= `  t )
( abs `  ( K `  m )
)  <  ( (
( E  /  2
)  /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) )  <->  A. m  e.  (
ZZ>= `  t ) ( K `  m )  <  ( ( ( E  /  2 )  /  s )  / 
( sup ( T ,  RR ,  <  )  +  1 ) ) ) )
206171breq1d 4466 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) )  <->  ( K `  m )  <  (
( ( E  / 
2 )  /  s
)  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )
207206cbvralv 3084 . . . . . . . . . . 11  |-  ( A. n  e.  ( ZZ>= `  t ) ( K `
 n )  < 
( ( ( E  /  2 )  / 
s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) )  <->  A. m  e.  ( ZZ>= `  t )
( K `  m
)  <  ( (
( E  /  2
)  /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) )
208205, 207syl6bbr 263 . . . . . . . . . 10  |-  ( ( ( ph  /\  ps )  /\  t  e.  NN0 )  ->  ( A. m  e.  ( ZZ>= `  t )
( abs `  ( K `  m )
)  <  ( (
( E  /  2
)  /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) )  <->  A. n  e.  (
ZZ>= `  t ) ( K `  n )  <  ( ( ( E  /  2 )  /  s )  / 
( sup ( T ,  RR ,  <  )  +  1 ) ) ) )
209 simpll 753 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ps )  /\  ( t  e. 
NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )  ->  ph )
210 mertens.1 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )
211209, 210sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ps )  /\  (
t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t ) ( K `
 n )  < 
( ( ( E  /  2 )  / 
s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )
212209, 8sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ps )  /\  (
t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t ) ( K `
 n )  < 
( ( ( E  /  2 )  / 
s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  A ) )
213209, 9sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ps )  /\  (
t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t ) ( K `
 n )  < 
( ( ( E  /  2 )  / 
s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )  /\  j  e.  NN0 )  ->  A  e.  CC )
214209, 20sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ps )  /\  (
t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t ) ( K `
 n )  < 
( ( ( E  /  2 )  / 
s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
215209, 21sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ps )  /\  (
t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t ) ( K `
 n )  < 
( ( ( E  /  2 )  / 
s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )  /\  k  e.  NN0 )  ->  B  e.  CC )
216 mertens.6 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `
 ( k  -  j ) ) ) )
217209, 216sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ps )  /\  (
t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t ) ( K `
 n )  < 
( ( ( E  /  2 )  / 
s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `
 ( k  -  j ) ) ) )
21812ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ps )  /\  ( t  e. 
NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )  ->  seq 0 (  +  ,  K )  e.  dom  ~~>  )
21922ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ps )  /\  ( t  e. 
NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )  ->  seq 0 (  +  ,  G )  e.  dom  ~~>  )
2203ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ps )  /\  ( t  e. 
NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )  ->  E  e.  RR+ )
221207anbi2i 694 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t ) ( K `
 n )  < 
( ( ( E  /  2 )  / 
s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) )  <->  ( t  e.  NN0  /\  A. m  e.  ( ZZ>= `  t )
( K `  m
)  <  ( (
( E  /  2
)  /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )
222221anbi2i 694 . . . . . . . . . . . . . 14  |-  ( ( ps  /\  ( t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )  <->  ( ps  /\  ( t  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  t ) ( K `  m )  <  ( ( ( E  /  2 )  /  s )  / 
( sup ( T ,  RR ,  <  )  +  1 ) ) ) ) )
223222biimpi 194 . . . . . . . . . . . . 13  |-  ( ( ps  /\  ( t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )  -> 
( ps  /\  (
t  e.  NN0  /\  A. m  e.  ( ZZ>= `  t ) ( K `
 m )  < 
( ( ( E  /  2 )  / 
s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) ) )
224223adantll 713 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ps )  /\  ( t  e. 
NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )  -> 
( ps  /\  (
t  e.  NN0  /\  A. m  e.  ( ZZ>= `  t ) ( K `
 m )  < 
( ( ( E  /  2 )  / 
s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) ) )
225168, 165jca 532 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( 0  <_  sup ( T ,  RR ,  <  )  /\  ( T 
C_  RR  /\  T  =/=  (/)  /\  E. z  e.  RR  A. w  e.  T  w  <_  z
) ) )
226225adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ps )  /\  ( t  e. 
NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )  -> 
( 0  <_  sup ( T ,  RR ,  <  )  /\  ( T 
C_  RR  /\  T  =/=  (/)  /\  E. z  e.  RR  A. w  e.  T  w  <_  z
) ) )
227211, 212, 213, 214, 215, 217, 218, 219, 220, 92, 85, 224, 226mertenslem1 13704 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ps )  /\  ( t  e. 
NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
228227expr 615 . . . . . . . . . 10  |-  ( ( ( ph  /\  ps )  /\  t  e.  NN0 )  ->  ( A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
E ) )
229208, 228sylbid 215 . . . . . . . . 9  |-  ( ( ( ph  /\  ps )  /\  t  e.  NN0 )  ->  ( A. m  e.  ( ZZ>= `  t )
( abs `  ( K `  m )
)  <  ( (
( E  /  2
)  /  s )  /  ( sup ( T ,  RR ,  <  )  +  1 ) )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
E ) )
230229rexlimdva 2949 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ( E. t  e. 
NN0  A. m  e.  (
ZZ>= `  t ) ( abs `  ( K `
 m ) )  <  ( ( ( E  /  2 )  /  s )  / 
( sup ( T ,  RR ,  <  )  +  1 ) )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E ) )
231192, 230mpd 15 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
232231ex 434 . . . . . 6  |-  ( ph  ->  ( ps  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
E ) )
23385, 232syl5bir 218 . . . . 5  |-  ( ph  ->  ( ( s  e.  NN  /\  A. n  e.  ( ZZ>= `  s )
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
E ) )
234233expdimp 437 . . . 4  |-  ( (
ph  /\  s  e.  NN )  ->  ( A. n  e.  ( ZZ>= `  s ) ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
E ) )
23584, 234sylbid 215 . . 3  |-  ( (
ph  /\  s  e.  NN )  ->  ( A. m  e.  ( ZZ>= `  s ) ( abs `  ( (  seq 0
(  +  ,  G
) `  m )  -  sum_ k  e.  NN0  B ) )  <  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E ) )
236235rexlimdva 2949 . 2  |-  ( ph  ->  ( E. s  e.  NN  A. m  e.  ( ZZ>= `  s )
( abs `  (
(  seq 0 (  +  ,  G ) `  m )  -  sum_ k  e.  NN0  B ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
E ) )
23724, 236mpd 15 1  |-  ( ph  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   {cab 2442    =/= wne 2652   A.wral 2807   E.wrex 2808   _Vcvv 3109    C_ wss 3471   (/)c0 3793   class class class wbr 4456    |-> cmpt 4515    Or wor 4808   dom cdm 5008   -->wf 5590   ` cfv 5594  (class class class)co 6296   Fincfn 7535   supcsup 7918   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    x. cmul 9514    < clt 9645    <_ cle 9646    - cmin 9824    / cdiv 10227   NNcn 10556   2c2 10606   NN0cn0 10816   ZZ>=cuz 11106   RR+crp 11245   ...cfz 11697    seqcseq 12109   abscabs 13078    ~~> cli 13318   sum_csu 13519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-oi 7953  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-ico 11560  df-fz 11698  df-fzo 11821  df-fl 11931  df-seq 12110  df-exp 12169  df-hash 12408  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-limsup 13305  df-clim 13322  df-rlim 13323  df-sum 13520
This theorem is referenced by:  mertens  13706
  Copyright terms: Public domain W3C validator