Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  merco2 Structured version   Unicode version

Theorem merco2 1589
 Description: A single axiom for propositional calculus offered by Meredith. This axiom has 19 symbols, sans auxiliaries. See notes in merco1 1566. (Contributed by Anthony Hart, 7-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merco2

Proof of Theorem merco2
StepHypRef Expression
1 falim 1419 . . . . . 6
2 pm2.04 82 . . . . . 6
31, 2mpi 20 . . . . 5
4 jarl 163 . . . . . 6
5 idd 24 . . . . . 6
64, 5jad 162 . . . . 5
7 looinv 182 . . . . 5
83, 6, 73syl 18 . . . 4
98a1dd 44 . . 3
109a1i 11 . 2
1110com4l 84 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wfal 1410 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 185  df-tru 1408  df-fal 1411 This theorem is referenced by:  mercolem1  1590  mercolem2  1591  mercolem3  1592  mercolem4  1593  mercolem5  1594  mercolem6  1595  mercolem7  1596  mercolem8  1597  re1tbw4  1601
 Copyright terms: Public domain W3C validator