Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendval Structured version   Unicode version

Theorem mendval 35962
Description: Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mendval.b  |-  B  =  ( M LMHom  M )
mendval.p  |-  .+  =  ( x  e.  B ,  y  e.  B  |->  ( x  oF ( +g  `  M
) y ) )
mendval.t  |-  .X.  =  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) )
mendval.s  |-  S  =  (Scalar `  M )
mendval.v  |-  .x.  =  ( x  e.  ( Base `  S ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
Assertion
Ref Expression
mendval  |-  ( M  e.  X  ->  (MEndo `  M )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } ) )
Distinct variable groups:    x, y, B    x, M, y
Allowed substitution hints:    .+ ( x, y)    S( x, y)    .x. ( x, y)    .X. ( x, y)    X( x, y)

Proof of Theorem mendval
Dummy variables  m  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3031 . 2  |-  ( M  e.  X  ->  M  e.  _V )
2 oveq12 6258 . . . . . . 7  |-  ( ( m  =  M  /\  m  =  M )  ->  ( m LMHom  m )  =  ( M LMHom  M
) )
32anidms 649 . . . . . 6  |-  ( m  =  M  ->  (
m LMHom  m )  =  ( M LMHom  M ) )
4 mendval.b . . . . . 6  |-  B  =  ( M LMHom  M )
53, 4syl6eqr 2480 . . . . 5  |-  ( m  =  M  ->  (
m LMHom  m )  =  B )
65csbeq1d 3345 . . . 4  |-  ( m  =  M  ->  [_ (
m LMHom  m )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b 
|->  ( x  oF ( +g  `  m
) y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  m ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  m ) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>. } )  =  [_ B  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  oF ( +g  `  m
) y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  m ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  m ) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>. } ) )
7 ovex 6277 . . . . . 6  |-  ( m LMHom 
m )  e.  _V
85, 7syl6eqelr 2515 . . . . 5  |-  ( m  =  M  ->  B  e.  _V )
9 simpr 462 . . . . . . . 8  |-  ( ( m  =  M  /\  b  =  B )  ->  b  =  B )
109opeq2d 4137 . . . . . . 7  |-  ( ( m  =  M  /\  b  =  B )  -> 
<. ( Base `  ndx ) ,  b >.  = 
<. ( Base `  ndx ) ,  B >. )
11 fveq2 5825 . . . . . . . . . . . 12  |-  ( m  =  M  ->  ( +g  `  m )  =  ( +g  `  M
) )
12 ofeq 6491 . . . . . . . . . . . 12  |-  ( ( +g  `  m )  =  ( +g  `  M
)  ->  oF
( +g  `  m )  =  oF ( +g  `  M ) )
1311, 12syl 17 . . . . . . . . . . 11  |-  ( m  =  M  ->  oF ( +g  `  m
)  =  oF ( +g  `  M
) )
1413oveqdr 6273 . . . . . . . . . 10  |-  ( ( m  =  M  /\  b  =  B )  ->  ( x  oF ( +g  `  m
) y )  =  ( x  oF ( +g  `  M
) y ) )
159, 9, 14mpt2eq123dv 6311 . . . . . . . . 9  |-  ( ( m  =  M  /\  b  =  B )  ->  ( x  e.  b ,  y  e.  b 
|->  ( x  oF ( +g  `  m
) y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  oF ( +g  `  M
) y ) ) )
16 mendval.p . . . . . . . . 9  |-  .+  =  ( x  e.  B ,  y  e.  B  |->  ( x  oF ( +g  `  M
) y ) )
1715, 16syl6eqr 2480 . . . . . . . 8  |-  ( ( m  =  M  /\  b  =  B )  ->  ( x  e.  b ,  y  e.  b 
|->  ( x  oF ( +g  `  m
) y ) )  =  .+  )
1817opeq2d 4137 . . . . . . 7  |-  ( ( m  =  M  /\  b  =  B )  -> 
<. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  oF ( +g  `  m
) y ) )
>.  =  <. ( +g  ` 
ndx ) ,  .+  >.
)
19 eqidd 2429 . . . . . . . . . 10  |-  ( ( m  =  M  /\  b  =  B )  ->  ( x  o.  y
)  =  ( x  o.  y ) )
209, 9, 19mpt2eq123dv 6311 . . . . . . . . 9  |-  ( ( m  =  M  /\  b  =  B )  ->  ( x  e.  b ,  y  e.  b 
|->  ( x  o.  y
) )  =  ( x  e.  B , 
y  e.  B  |->  ( x  o.  y ) ) )
21 mendval.t . . . . . . . . 9  |-  .X.  =  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) )
2220, 21syl6eqr 2480 . . . . . . . 8  |-  ( ( m  =  M  /\  b  =  B )  ->  ( x  e.  b ,  y  e.  b 
|->  ( x  o.  y
) )  =  .X.  )
2322opeq2d 4137 . . . . . . 7  |-  ( ( m  =  M  /\  b  =  B )  -> 
<. ( .r `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >.  =  <. ( .r `  ndx ) ,  .X.  >. )
2410, 18, 23tpeq123d 4037 . . . . . 6  |-  ( ( m  =  M  /\  b  =  B )  ->  { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  oF ( +g  `  m
) y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >. }  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. } )
25 fveq2 5825 . . . . . . . . . 10  |-  ( m  =  M  ->  (Scalar `  m )  =  (Scalar `  M ) )
2625adantr 466 . . . . . . . . 9  |-  ( ( m  =  M  /\  b  =  B )  ->  (Scalar `  m )  =  (Scalar `  M )
)
27 mendval.s . . . . . . . . 9  |-  S  =  (Scalar `  M )
2826, 27syl6eqr 2480 . . . . . . . 8  |-  ( ( m  =  M  /\  b  =  B )  ->  (Scalar `  m )  =  S )
2928opeq2d 4137 . . . . . . 7  |-  ( ( m  =  M  /\  b  =  B )  -> 
<. (Scalar `  ndx ) ,  (Scalar `  m ) >.  =  <. (Scalar `  ndx ) ,  S >. )
3028fveq2d 5829 . . . . . . . . . 10  |-  ( ( m  =  M  /\  b  =  B )  ->  ( Base `  (Scalar `  m ) )  =  ( Base `  S
) )
31 fveq2 5825 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  ( .s `  m )  =  ( .s `  M
) )
3231adantr 466 . . . . . . . . . . . 12  |-  ( ( m  =  M  /\  b  =  B )  ->  ( .s `  m
)  =  ( .s
`  M ) )
33 ofeq 6491 . . . . . . . . . . . 12  |-  ( ( .s `  m )  =  ( .s `  M )  ->  oF ( .s `  m )  =  oF ( .s `  M ) )
3432, 33syl 17 . . . . . . . . . . 11  |-  ( ( m  =  M  /\  b  =  B )  ->  oF ( .s
`  m )  =  oF ( .s
`  M ) )
35 fveq2 5825 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  ( Base `  m )  =  ( Base `  M
) )
3635adantr 466 . . . . . . . . . . . 12  |-  ( ( m  =  M  /\  b  =  B )  ->  ( Base `  m
)  =  ( Base `  M ) )
3736xpeq1d 4819 . . . . . . . . . . 11  |-  ( ( m  =  M  /\  b  =  B )  ->  ( ( Base `  m
)  X.  { x } )  =  ( ( Base `  M
)  X.  { x } ) )
38 eqidd 2429 . . . . . . . . . . 11  |-  ( ( m  =  M  /\  b  =  B )  ->  y  =  y )
3934, 37, 38oveq123d 6270 . . . . . . . . . 10  |-  ( ( m  =  M  /\  b  =  B )  ->  ( ( ( Base `  m )  X.  {
x } )  oF ( .s `  m ) y )  =  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) y ) )
4030, 9, 39mpt2eq123dv 6311 . . . . . . . . 9  |-  ( ( m  =  M  /\  b  =  B )  ->  ( x  e.  (
Base `  (Scalar `  m
) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )  =  ( x  e.  ( Base `  S
) ,  y  e.  B  |->  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) y ) ) )
41 mendval.v . . . . . . . . 9  |-  .x.  =  ( x  e.  ( Base `  S ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
4240, 41syl6eqr 2480 . . . . . . . 8  |-  ( ( m  =  M  /\  b  =  B )  ->  ( x  e.  (
Base `  (Scalar `  m
) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )  =  .x.  )
4342opeq2d 4137 . . . . . . 7  |-  ( ( m  =  M  /\  b  =  B )  -> 
<. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  m ) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>.  =  <. ( .s
`  ndx ) ,  .x.  >.
)
4429, 43preq12d 4030 . . . . . 6  |-  ( ( m  =  M  /\  b  =  B )  ->  { <. (Scalar `  ndx ) ,  (Scalar `  m
) >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  (Scalar `  m
) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>. }  =  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  .x.  >. } )
4524, 44uneq12d 3564 . . . . 5  |-  ( ( m  =  M  /\  b  =  B )  ->  ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b 
|->  ( x  oF ( +g  `  m
) y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  m ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  m ) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } ) )
468, 45csbied 3365 . . . 4  |-  ( m  =  M  ->  [_ B  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  oF ( +g  `  m
) y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  m ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  m ) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } ) )
476, 46eqtrd 2462 . . 3  |-  ( m  =  M  ->  [_ (
m LMHom  m )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b 
|->  ( x  oF ( +g  `  m
) y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  m ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  m ) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } ) )
48 df-mend 35955 . . 3  |- MEndo  =  ( m  e.  _V  |->  [_ ( m LMHom  m )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  oF ( +g  `  m
) y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  m ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  m ) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>. } ) )
49 tpex 6548 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  e.  _V
50 prex 4606 . . . 4  |-  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  .x.  >. }  e.  _V
5149, 50unex 6547 . . 3  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } )  e. 
_V
5247, 48, 51fvmpt 5908 . 2  |-  ( M  e.  _V  ->  (MEndo `  M )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } ) )
531, 52syl 17 1  |-  ( M  e.  X  ->  (MEndo `  M )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872   _Vcvv 3022   [_csb 3338    u. cun 3377   {csn 3941   {cpr 3943   {ctp 3945   <.cop 3947    X. cxp 4794    o. ccom 4800   ` cfv 5544  (class class class)co 6249    |-> cmpt2 6251    oFcof 6487   ndxcnx 15061   Basecbs 15064   +g cplusg 15133   .rcmulr 15134  Scalarcsca 15136   .scvsca 15137   LMHom clmhm 18185  MEndocmend 35954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pr 4603  ax-un 6541
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-br 4367  df-opab 4426  df-mpt 4427  df-id 4711  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-iota 5508  df-fun 5546  df-fv 5552  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-of 6489  df-mend 35955
This theorem is referenced by:  mendbas  35963  mendplusgfval  35964  mendmulrfval  35966  mendsca  35968  mendvscafval  35969
  Copyright terms: Public domain W3C validator