Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendring Structured version   Unicode version

Theorem mendring 31117
Description: The module endomorphism algebra is a ring. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
mendassa.a  |-  A  =  (MEndo `  M )
Assertion
Ref Expression
mendring  |-  ( M  e.  LMod  ->  A  e. 
Ring )

Proof of Theorem mendring
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4  |-  A  =  (MEndo `  M )
21mendbas 31109 . . 3  |-  ( M LMHom 
M )  =  (
Base `  A )
32a1i 11 . 2  |-  ( M  e.  LMod  ->  ( M LMHom 
M )  =  (
Base `  A )
)
4 eqidd 2444 . 2  |-  ( M  e.  LMod  ->  ( +g  `  A )  =  ( +g  `  A ) )
5 eqidd 2444 . 2  |-  ( M  e.  LMod  ->  ( .r
`  A )  =  ( .r `  A
) )
6 eqid 2443 . . . . . 6  |-  ( +g  `  M )  =  ( +g  `  M )
7 eqid 2443 . . . . . 6  |-  ( +g  `  A )  =  ( +g  `  A )
81, 2, 6, 7mendplusg 31111 . . . . 5  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( +g  `  A ) y )  =  ( x  oF ( +g  `  M ) y ) )
96lmhmplusg 17668 . . . . 5  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x  oF ( +g  `  M ) y )  e.  ( M LMHom  M
) )
108, 9eqeltrd 2531 . . . 4  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( +g  `  A ) y )  e.  ( M LMHom  M ) )
11103adant1 1015 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x ( +g  `  A ) y )  e.  ( M LMHom  M ) )
12 simpr1 1003 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  e.  ( M LMHom  M ) )
13 simpr2 1004 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y  e.  ( M LMHom  M ) )
1412, 13, 9syl2anc 661 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x  oF ( +g  `  M ) y )  e.  ( M LMHom  M
) )
15 simpr3 1005 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  z  e.  ( M LMHom  M ) )
161, 2, 6, 7mendplusg 31111 . . . . 5  |-  ( ( ( x  oF ( +g  `  M
) y )  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) )  ->  ( ( x  oF ( +g  `  M ) y ) ( +g  `  A
) z )  =  ( ( x  oF ( +g  `  M
) y )  oF ( +g  `  M
) z ) )
1714, 15, 16syl2anc 661 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  oF ( +g  `  M ) y ) ( +g  `  A ) z )  =  ( ( x  oF ( +g  `  M ) y )  oF ( +g  `  M ) z ) )
1812, 13, 8syl2anc 661 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( +g  `  A ) y )  =  ( x  oF ( +g  `  M ) y ) )
1918oveq1d 6296 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( +g  `  A
) y ) ( +g  `  A ) z )  =  ( ( x  oF ( +g  `  M
) y ) ( +g  `  A ) z ) )
206lmhmplusg 17668 . . . . . . 7  |-  ( ( y  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y  oF ( +g  `  M ) z )  e.  ( M LMHom  M
) )
2113, 15, 20syl2anc 661 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( y  oF ( +g  `  M ) z )  e.  ( M LMHom  M
) )
221, 2, 6, 7mendplusg 31111 . . . . . 6  |-  ( ( x  e.  ( M LMHom 
M )  /\  (
y  oF ( +g  `  M ) z )  e.  ( M LMHom  M ) )  ->  ( x ( +g  `  A ) ( y  oF ( +g  `  M
) z ) )  =  ( x  oF ( +g  `  M
) ( y  oF ( +g  `  M
) z ) ) )
2312, 21, 22syl2anc 661 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( +g  `  A ) ( y  oF ( +g  `  M
) z ) )  =  ( x  oF ( +g  `  M
) ( y  oF ( +g  `  M
) z ) ) )
241, 2, 6, 7mendplusg 31111 . . . . . . 7  |-  ( ( y  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y
( +g  `  A ) z )  =  ( y  oF ( +g  `  M ) z ) )
2513, 15, 24syl2anc 661 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( y
( +g  `  A ) z )  =  ( y  oF ( +g  `  M ) z ) )
2625oveq2d 6297 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( +g  `  A ) ( y ( +g  `  A ) z ) )  =  ( x ( +g  `  A
) ( y  oF ( +g  `  M
) z ) ) )
27 lmodgrp 17497 . . . . . . . 8  |-  ( M  e.  LMod  ->  M  e. 
Grp )
28 grpmnd 16040 . . . . . . . 8  |-  ( M  e.  Grp  ->  M  e.  Mnd )
2927, 28syl 16 . . . . . . 7  |-  ( M  e.  LMod  ->  M  e. 
Mnd )
3029adantr 465 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  M  e.  Mnd )
31 eqid 2443 . . . . . . . . 9  |-  ( Base `  M )  =  (
Base `  M )
3231, 31lmhmf 17658 . . . . . . . 8  |-  ( x  e.  ( M LMHom  M
)  ->  x :
( Base `  M ) --> ( Base `  M )
)
3312, 32syl 16 . . . . . . 7  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x :
( Base `  M ) --> ( Base `  M )
)
34 fvex 5866 . . . . . . . 8  |-  ( Base `  M )  e.  _V
3534, 34elmap 7449 . . . . . . 7  |-  ( x  e.  ( ( Base `  M )  ^m  ( Base `  M ) )  <-> 
x : ( Base `  M ) --> ( Base `  M ) )
3633, 35sylibr 212 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  e.  ( ( Base `  M
)  ^m  ( Base `  M ) ) )
3731, 31lmhmf 17658 . . . . . . . 8  |-  ( y  e.  ( M LMHom  M
)  ->  y :
( Base `  M ) --> ( Base `  M )
)
3813, 37syl 16 . . . . . . 7  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y :
( Base `  M ) --> ( Base `  M )
)
3934, 34elmap 7449 . . . . . . 7  |-  ( y  e.  ( ( Base `  M )  ^m  ( Base `  M ) )  <-> 
y : ( Base `  M ) --> ( Base `  M ) )
4038, 39sylibr 212 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y  e.  ( ( Base `  M
)  ^m  ( Base `  M ) ) )
4131, 31lmhmf 17658 . . . . . . . 8  |-  ( z  e.  ( M LMHom  M
)  ->  z :
( Base `  M ) --> ( Base `  M )
)
4215, 41syl 16 . . . . . . 7  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  z :
( Base `  M ) --> ( Base `  M )
)
4334, 34elmap 7449 . . . . . . 7  |-  ( z  e.  ( ( Base `  M )  ^m  ( Base `  M ) )  <-> 
z : ( Base `  M ) --> ( Base `  M ) )
4442, 43sylibr 212 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  z  e.  ( ( Base `  M
)  ^m  ( Base `  M ) ) )
4531, 6mndvass 18871 . . . . . 6  |-  ( ( M  e.  Mnd  /\  ( x  e.  (
( Base `  M )  ^m  ( Base `  M
) )  /\  y  e.  ( ( Base `  M
)  ^m  ( Base `  M ) )  /\  z  e.  ( ( Base `  M )  ^m  ( Base `  M )
) ) )  -> 
( ( x  oF ( +g  `  M
) y )  oF ( +g  `  M
) z )  =  ( x  oF ( +g  `  M
) ( y  oF ( +g  `  M
) z ) ) )
4630, 36, 40, 44, 45syl13anc 1231 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  oF ( +g  `  M ) y )  oF ( +g  `  M
) z )  =  ( x  oF ( +g  `  M
) ( y  oF ( +g  `  M
) z ) ) )
4723, 26, 463eqtr4d 2494 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( +g  `  A ) ( y ( +g  `  A ) z ) )  =  ( ( x  oF ( +g  `  M ) y )  oF ( +g  `  M
) z ) )
4817, 19, 473eqtr4d 2494 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( +g  `  A
) y ) ( +g  `  A ) z )  =  ( x ( +g  `  A
) ( y ( +g  `  A ) z ) ) )
49 id 22 . . . 4  |-  ( M  e.  LMod  ->  M  e. 
LMod )
50 eqidd 2444 . . . 4  |-  ( M  e.  LMod  ->  (Scalar `  M )  =  (Scalar `  M ) )
51 eqid 2443 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
52 eqid 2443 . . . . 5  |-  (Scalar `  M )  =  (Scalar `  M )
5351, 31, 52, 520lmhm 17664 . . . 4  |-  ( ( M  e.  LMod  /\  M  e.  LMod  /\  (Scalar `  M
)  =  (Scalar `  M ) )  -> 
( ( Base `  M
)  X.  { ( 0g `  M ) } )  e.  ( M LMHom  M ) )
5449, 49, 50, 53syl3anc 1229 . . 3  |-  ( M  e.  LMod  ->  ( (
Base `  M )  X.  { ( 0g `  M ) } )  e.  ( M LMHom  M
) )
551, 2, 6, 7mendplusg 31111 . . . . 5  |-  ( ( ( ( Base `  M
)  X.  { ( 0g `  M ) } )  e.  ( M LMHom  M )  /\  x  e.  ( M LMHom  M ) )  ->  (
( ( Base `  M
)  X.  { ( 0g `  M ) } ) ( +g  `  A ) x )  =  ( ( (
Base `  M )  X.  { ( 0g `  M ) } )  oF ( +g  `  M ) x ) )
5654, 55sylan 471 . . . 4  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( Base `  M )  X.  { ( 0g `  M ) } ) ( +g  `  A
) x )  =  ( ( ( Base `  M )  X.  {
( 0g `  M
) } )  oF ( +g  `  M
) x ) )
5732, 35sylibr 212 . . . . 5  |-  ( x  e.  ( M LMHom  M
)  ->  x  e.  ( ( Base `  M
)  ^m  ( Base `  M ) ) )
5831, 6, 51mndvlid 18872 . . . . 5  |-  ( ( M  e.  Mnd  /\  x  e.  ( ( Base `  M )  ^m  ( Base `  M )
) )  ->  (
( ( Base `  M
)  X.  { ( 0g `  M ) } )  oF ( +g  `  M
) x )  =  x )
5929, 57, 58syl2an 477 . . . 4  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( Base `  M )  X.  { ( 0g `  M ) } )  oF ( +g  `  M ) x )  =  x )
6056, 59eqtrd 2484 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( Base `  M )  X.  { ( 0g `  M ) } ) ( +g  `  A
) x )  =  x )
61 eqid 2443 . . . . 5  |-  ( invg `  M )  =  ( invg `  M )
6261invlmhm 17666 . . . 4  |-  ( M  e.  LMod  ->  ( invg `  M )  e.  ( M LMHom  M
) )
63 lmhmco 17667 . . . 4  |-  ( ( ( invg `  M )  e.  ( M LMHom  M )  /\  x  e.  ( M LMHom  M ) )  ->  (
( invg `  M )  o.  x
)  e.  ( M LMHom 
M ) )
6462, 63sylan 471 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( ( invg `  M )  o.  x )  e.  ( M LMHom  M ) )
651, 2, 6, 7mendplusg 31111 . . . . 5  |-  ( ( ( ( invg `  M )  o.  x
)  e.  ( M LMHom 
M )  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( invg `  M )  o.  x
) ( +g  `  A
) x )  =  ( ( ( invg `  M )  o.  x )  oF ( +g  `  M
) x ) )
6664, 65sylancom 667 . . . 4  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( invg `  M )  o.  x
) ( +g  `  A
) x )  =  ( ( ( invg `  M )  o.  x )  oF ( +g  `  M
) x ) )
6731, 6, 61, 51grpvlinv 18874 . . . . 5  |-  ( ( M  e.  Grp  /\  x  e.  ( ( Base `  M )  ^m  ( Base `  M )
) )  ->  (
( ( invg `  M )  o.  x
)  oF ( +g  `  M ) x )  =  ( ( Base `  M
)  X.  { ( 0g `  M ) } ) )
6827, 57, 67syl2an 477 . . . 4  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( invg `  M )  o.  x
)  oF ( +g  `  M ) x )  =  ( ( Base `  M
)  X.  { ( 0g `  M ) } ) )
6966, 68eqtrd 2484 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( invg `  M )  o.  x
) ( +g  `  A
) x )  =  ( ( Base `  M
)  X.  { ( 0g `  M ) } ) )
703, 4, 11, 48, 54, 60, 64, 69isgrpd 16053 . 2  |-  ( M  e.  LMod  ->  A  e. 
Grp )
71 eqid 2443 . . . . 5  |-  ( .r
`  A )  =  ( .r `  A
)
721, 2, 71mendmulr 31113 . . . 4  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( .r `  A
) y )  =  ( x  o.  y
) )
73 lmhmco 17667 . . . 4  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x  o.  y )  e.  ( M LMHom  M ) )
7472, 73eqeltrd 2531 . . 3  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( .r `  A
) y )  e.  ( M LMHom  M ) )
75743adant1 1015 . 2  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x ( .r `  A ) y )  e.  ( M LMHom  M ) )
76 coass 5516 . . 3  |-  ( ( x  o.  y )  o.  z )  =  ( x  o.  (
y  o.  z ) )
7712, 13, 72syl2anc 661 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) y )  =  ( x  o.  y
) )
7877oveq1d 6296 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) y ) ( .r `  A
) z )  =  ( ( x  o.  y ) ( .r
`  A ) z ) )
7912, 13, 73syl2anc 661 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x  o.  y )  e.  ( M LMHom  M ) )
801, 2, 71mendmulr 31113 . . . . 5  |-  ( ( ( x  o.  y
)  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( (
x  o.  y ) ( .r `  A
) z )  =  ( ( x  o.  y )  o.  z
) )
8179, 15, 80syl2anc 661 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o.  y ) ( .r `  A
) z )  =  ( ( x  o.  y )  o.  z
) )
8278, 81eqtrd 2484 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) y ) ( .r `  A
) z )  =  ( ( x  o.  y )  o.  z
) )
831, 2, 71mendmulr 31113 . . . . . 6  |-  ( ( y  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y
( .r `  A
) z )  =  ( y  o.  z
) )
8413, 15, 83syl2anc 661 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( y
( .r `  A
) z )  =  ( y  o.  z
) )
8584oveq2d 6297 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y ( .r `  A ) z ) )  =  ( x ( .r
`  A ) ( y  o.  z ) ) )
86 lmhmco 17667 . . . . . 6  |-  ( ( y  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y  o.  z )  e.  ( M LMHom  M ) )
8713, 15, 86syl2anc 661 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( y  o.  z )  e.  ( M LMHom  M ) )
881, 2, 71mendmulr 31113 . . . . 5  |-  ( ( x  e.  ( M LMHom 
M )  /\  (
y  o.  z )  e.  ( M LMHom  M
) )  ->  (
x ( .r `  A ) ( y  o.  z ) )  =  ( x  o.  ( y  o.  z
) ) )
8912, 87, 88syl2anc 661 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y  o.  z ) )  =  ( x  o.  (
y  o.  z ) ) )
9085, 89eqtrd 2484 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y ( .r `  A ) z ) )  =  ( x  o.  (
y  o.  z ) ) )
9176, 82, 903eqtr4a 2510 . 2  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) y ) ( .r `  A
) z )  =  ( x ( .r
`  A ) ( y ( .r `  A ) z ) ) )
921, 2, 71mendmulr 31113 . . . 4  |-  ( ( x  e.  ( M LMHom 
M )  /\  (
y  oF ( +g  `  M ) z )  e.  ( M LMHom  M ) )  ->  ( x ( .r `  A ) ( y  oF ( +g  `  M
) z ) )  =  ( x  o.  ( y  oF ( +g  `  M
) z ) ) )
9312, 21, 92syl2anc 661 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y  oF ( +g  `  M
) z ) )  =  ( x  o.  ( y  oF ( +g  `  M
) z ) ) )
9425oveq2d 6297 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y ( +g  `  A ) z ) )  =  ( x ( .r
`  A ) ( y  oF ( +g  `  M ) z ) ) )
95 lmhmco 17667 . . . . . 6  |-  ( ( x  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( x  o.  z )  e.  ( M LMHom  M ) )
9612, 15, 95syl2anc 661 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x  o.  z )  e.  ( M LMHom  M ) )
971, 2, 6, 7mendplusg 31111 . . . . 5  |-  ( ( ( x  o.  y
)  e.  ( M LMHom 
M )  /\  (
x  o.  z )  e.  ( M LMHom  M
) )  ->  (
( x  o.  y
) ( +g  `  A
) ( x  o.  z ) )  =  ( ( x  o.  y )  oF ( +g  `  M
) ( x  o.  z ) ) )
9879, 96, 97syl2anc 661 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o.  y ) ( +g  `  A
) ( x  o.  z ) )  =  ( ( x  o.  y )  oF ( +g  `  M
) ( x  o.  z ) ) )
991, 2, 71mendmulr 31113 . . . . . 6  |-  ( ( x  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( x
( .r `  A
) z )  =  ( x  o.  z
) )
10012, 15, 99syl2anc 661 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) z )  =  ( x  o.  z
) )
10177, 100oveq12d 6299 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) y ) ( +g  `  A
) ( x ( .r `  A ) z ) )  =  ( ( x  o.  y ) ( +g  `  A ) ( x  o.  z ) ) )
102 lmghm 17655 . . . . . 6  |-  ( x  e.  ( M LMHom  M
)  ->  x  e.  ( M  GrpHom  M ) )
103 ghmmhm 16255 . . . . . 6  |-  ( x  e.  ( M  GrpHom  M )  ->  x  e.  ( M MndHom  M ) )
10412, 102, 1033syl 20 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  e.  ( M MndHom  M ) )
10531, 6, 6mhmvlin 18876 . . . . 5  |-  ( ( x  e.  ( M MndHom  M )  /\  y  e.  ( ( Base `  M
)  ^m  ( Base `  M ) )  /\  z  e.  ( ( Base `  M )  ^m  ( Base `  M )
) )  ->  (
x  o.  ( y  oF ( +g  `  M ) z ) )  =  ( ( x  o.  y )  oF ( +g  `  M ) ( x  o.  z ) ) )
106104, 40, 44, 105syl3anc 1229 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x  o.  ( y  oF ( +g  `  M
) z ) )  =  ( ( x  o.  y )  oF ( +g  `  M
) ( x  o.  z ) ) )
10798, 101, 1063eqtr4d 2494 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) y ) ( +g  `  A
) ( x ( .r `  A ) z ) )  =  ( x  o.  (
y  oF ( +g  `  M ) z ) ) )
10893, 94, 1073eqtr4d 2494 . 2  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y ( +g  `  A ) z ) )  =  ( ( x ( .r `  A ) y ) ( +g  `  A ) ( x ( .r `  A
) z ) ) )
1091, 2, 71mendmulr 31113 . . . 4  |-  ( ( ( x  oF ( +g  `  M
) y )  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) )  ->  ( ( x  oF ( +g  `  M ) y ) ( .r `  A
) z )  =  ( ( x  oF ( +g  `  M
) y )  o.  z ) )
11014, 15, 109syl2anc 661 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  oF ( +g  `  M ) y ) ( .r
`  A ) z )  =  ( ( x  oF ( +g  `  M ) y )  o.  z
) )
11118oveq1d 6296 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( +g  `  A
) y ) ( .r `  A ) z )  =  ( ( x  oF ( +g  `  M
) y ) ( .r `  A ) z ) )
1121, 2, 6, 7mendplusg 31111 . . . . 5  |-  ( ( ( x  o.  z
)  e.  ( M LMHom 
M )  /\  (
y  o.  z )  e.  ( M LMHom  M
) )  ->  (
( x  o.  z
) ( +g  `  A
) ( y  o.  z ) )  =  ( ( x  o.  z )  oF ( +g  `  M
) ( y  o.  z ) ) )
11396, 87, 112syl2anc 661 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o.  z ) ( +g  `  A
) ( y  o.  z ) )  =  ( ( x  o.  z )  oF ( +g  `  M
) ( y  o.  z ) ) )
114100, 84oveq12d 6299 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) z ) ( +g  `  A
) ( y ( .r `  A ) z ) )  =  ( ( x  o.  z ) ( +g  `  A ) ( y  o.  z ) ) )
115 ffn 5721 . . . . . 6  |-  ( x : ( Base `  M
) --> ( Base `  M
)  ->  x  Fn  ( Base `  M )
)
11612, 32, 1153syl 20 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  Fn  ( Base `  M )
)
117 ffn 5721 . . . . . 6  |-  ( y : ( Base `  M
) --> ( Base `  M
)  ->  y  Fn  ( Base `  M )
)
11813, 37, 1173syl 20 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y  Fn  ( Base `  M )
)
11934a1i 11 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( Base `  M )  e.  _V )
120 inidm 3692 . . . . 5  |-  ( (
Base `  M )  i^i  ( Base `  M
) )  =  (
Base `  M )
121116, 118, 42, 119, 119, 119, 120ofco 6545 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  oF ( +g  `  M ) y )  o.  z
)  =  ( ( x  o.  z )  oF ( +g  `  M ) ( y  o.  z ) ) )
122113, 114, 1213eqtr4d 2494 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) z ) ( +g  `  A
) ( y ( .r `  A ) z ) )  =  ( ( x  oF ( +g  `  M
) y )  o.  z ) )
123110, 111, 1223eqtr4d 2494 . 2  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( +g  `  A
) y ) ( .r `  A ) z )  =  ( ( x ( .r
`  A ) z ) ( +g  `  A
) ( y ( .r `  A ) z ) ) )
12431idlmhm 17665 . 2  |-  ( M  e.  LMod  ->  (  _I  |`  ( Base `  M
) )  e.  ( M LMHom  M ) )
1251, 2, 71mendmulr 31113 . . . 4  |-  ( ( (  _I  |`  ( Base `  M ) )  e.  ( M LMHom  M
)  /\  x  e.  ( M LMHom  M ) )  ->  ( (  _I  |`  ( Base `  M
) ) ( .r
`  A ) x )  =  ( (  _I  |`  ( Base `  M ) )  o.  x ) )
126124, 125sylan 471 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (  _I  |`  ( Base `  M
) ) ( .r
`  A ) x )  =  ( (  _I  |`  ( Base `  M ) )  o.  x ) )
12732adantl 466 . . . 4  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  x :
( Base `  M ) --> ( Base `  M )
)
128 fcoi2 5750 . . . 4  |-  ( x : ( Base `  M
) --> ( Base `  M
)  ->  ( (  _I  |`  ( Base `  M
) )  o.  x
)  =  x )
129127, 128syl 16 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (  _I  |`  ( Base `  M
) )  o.  x
)  =  x )
130126, 129eqtrd 2484 . 2  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (  _I  |`  ( Base `  M
) ) ( .r
`  A ) x )  =  x )
131 id 22 . . . 4  |-  ( x  e.  ( M LMHom  M
)  ->  x  e.  ( M LMHom  M ) )
1321, 2, 71mendmulr 31113 . . . 4  |-  ( ( x  e.  ( M LMHom 
M )  /\  (  _I  |`  ( Base `  M
) )  e.  ( M LMHom  M ) )  ->  ( x ( .r `  A ) (  _I  |`  ( Base `  M ) ) )  =  ( x  o.  (  _I  |`  ( Base `  M ) ) ) )
133131, 124, 132syl2anr 478 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( x
( .r `  A
) (  _I  |`  ( Base `  M ) ) )  =  ( x  o.  (  _I  |`  ( Base `  M ) ) ) )
134 fcoi1 5749 . . . 4  |-  ( x : ( Base `  M
) --> ( Base `  M
)  ->  ( x  o.  (  _I  |`  ( Base `  M ) ) )  =  x )
135127, 134syl 16 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( x  o.  (  _I  |`  ( Base `  M ) ) )  =  x )
136133, 135eqtrd 2484 . 2  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( x
( .r `  A
) (  _I  |`  ( Base `  M ) ) )  =  x )
1373, 4, 5, 70, 75, 91, 108, 123, 124, 130, 136isringd 17211 1  |-  ( M  e.  LMod  ->  A  e. 
Ring )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   _Vcvv 3095   {csn 4014    _I cid 4780    X. cxp 4987    |` cres 4991    o. ccom 4993    Fn wfn 5573   -->wf 5574   ` cfv 5578  (class class class)co 6281    oFcof 6523    ^m cmap 7422   Basecbs 14613   +g cplusg 14678   .rcmulr 14679  Scalarcsca 14681   0gc0g 14818   Mndcmnd 15897   MndHom cmhm 15942   Grpcgrp 16031   invgcminusg 16032    GrpHom cghm 16242   Ringcrg 17176   LModclmod 17490   LMHom clmhm 17643  MEndocmend 31100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-n0 10803  df-z 10872  df-uz 11092  df-fz 11683  df-struct 14615  df-ndx 14616  df-slot 14617  df-base 14618  df-sets 14619  df-plusg 14691  df-mulr 14692  df-sca 14694  df-vsca 14695  df-0g 14820  df-mgm 15850  df-sgrp 15889  df-mnd 15899  df-mhm 15944  df-grp 16035  df-minusg 16036  df-ghm 16243  df-cmn 16778  df-abl 16779  df-mgp 17120  df-ur 17132  df-ring 17178  df-lmod 17492  df-lmhm 17646  df-mend 31101
This theorem is referenced by:  mendlmod  31118  mendassa  31119
  Copyright terms: Public domain W3C validator