Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendplusgfval Structured version   Visualization version   Unicode version

Theorem mendplusgfval 36122
Description: Addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mendplusgfval.a  |-  A  =  (MEndo `  M )
mendplusgfval.b  |-  B  =  ( Base `  A
)
mendplusgfval.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
mendplusgfval  |-  ( +g  `  A )  =  ( x  e.  B , 
y  e.  B  |->  ( x  oF  .+  y ) )
Distinct variable groups:    x, y, B    x, M, y    x,  .+ , y
Allowed substitution hints:    A( x, y)

Proof of Theorem mendplusgfval
StepHypRef Expression
1 mendplusgfval.a . . . . 5  |-  A  =  (MEndo `  M )
2 mendplusgfval.b . . . . . . 7  |-  B  =  ( Base `  A
)
31mendbas 36121 . . . . . . 7  |-  ( M LMHom 
M )  =  (
Base `  A )
42, 3eqtr4i 2496 . . . . . 6  |-  B  =  ( M LMHom  M )
5 mendplusgfval.p . . . . . . . . . 10  |-  .+  =  ( +g  `  M )
6 ofeq 6552 . . . . . . . . . 10  |-  (  .+  =  ( +g  `  M
)  ->  oF  .+  =  oF
( +g  `  M ) )
75, 6ax-mp 5 . . . . . . . . 9  |-  oF  .+  =  oF ( +g  `  M
)
87oveqi 6321 . . . . . . . 8  |-  ( x  oF  .+  y
)  =  ( x  oF ( +g  `  M ) y )
98a1i 11 . . . . . . 7  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  oF  .+  y )  =  ( x  oF ( +g  `  M
) y ) )
109mpt2eq3ia 6375 . . . . . 6  |-  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y
) )  =  ( x  e.  B , 
y  e.  B  |->  ( x  oF ( +g  `  M ) y ) )
11 eqid 2471 . . . . . 6  |-  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y ) )
12 eqid 2471 . . . . . 6  |-  (Scalar `  M )  =  (Scalar `  M )
13 eqid 2471 . . . . . 6  |-  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )  =  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
144, 10, 11, 12, 13mendval 36120 . . . . 5  |-  ( M  e.  _V  ->  (MEndo `  M )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
>. } ) )
151, 14syl5eq 2517 . . . 4  |-  ( M  e.  _V  ->  A  =  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  B , 
y  e.  B  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
>. } ) )
1615fveq2d 5883 . . 3  |-  ( M  e.  _V  ->  ( +g  `  A )  =  ( +g  `  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
>. } ) ) )
17 fvex 5889 . . . . . 6  |-  ( Base `  A )  e.  _V
182, 17eqeltri 2545 . . . . 5  |-  B  e. 
_V
1918, 18mpt2ex 6889 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y
) )  e.  _V
20 eqid 2471 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
>. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
>. } )
2120algaddg 36116 . . . 4  |-  ( ( x  e.  B , 
y  e.  B  |->  ( x  oF  .+  y ) )  e. 
_V  ->  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) )  =  ( +g  `  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  B , 
y  e.  B  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
>. } ) ) )
2219, 21mp1i 13 . . 3  |-  ( M  e.  _V  ->  (
x  e.  B , 
y  e.  B  |->  ( x  oF  .+  y ) )  =  ( +g  `  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
>. } ) ) )
2316, 22eqtr4d 2508 . 2  |-  ( M  e.  _V  ->  ( +g  `  A )  =  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) ) )
24 fvprc 5873 . . . . . 6  |-  ( -.  M  e.  _V  ->  (MEndo `  M )  =  (/) )
251, 24syl5eq 2517 . . . . 5  |-  ( -.  M  e.  _V  ->  A  =  (/) )
2625fveq2d 5883 . . . 4  |-  ( -.  M  e.  _V  ->  ( +g  `  A )  =  ( +g  `  (/) ) )
27 df-plusg 15281 . . . . 5  |-  +g  = Slot  2
2827str0 15239 . . . 4  |-  (/)  =  ( +g  `  (/) )
2926, 28syl6eqr 2523 . . 3  |-  ( -.  M  e.  _V  ->  ( +g  `  A )  =  (/) )
3025fveq2d 5883 . . . . . 6  |-  ( -.  M  e.  _V  ->  (
Base `  A )  =  ( Base `  (/) ) )
31 base0 15240 . . . . . 6  |-  (/)  =  (
Base `  (/) )
3230, 2, 313eqtr4g 2530 . . . . 5  |-  ( -.  M  e.  _V  ->  B  =  (/) )
33 mpt2eq12 6370 . . . . . 6  |-  ( ( B  =  (/)  /\  B  =  (/) )  ->  (
x  e.  B , 
y  e.  B  |->  ( x  oF  .+  y ) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( x  oF  .+  y
) ) )
3433anidms 657 . . . . 5  |-  ( B  =  (/)  ->  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y
) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( x  oF  .+  y ) ) )
3532, 34syl 17 . . . 4  |-  ( -.  M  e.  _V  ->  ( x  e.  B , 
y  e.  B  |->  ( x  oF  .+  y ) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( x  oF  .+  y
) ) )
36 mpt20 6380 . . . 4  |-  ( x  e.  (/) ,  y  e.  (/)  |->  ( x  oF  .+  y ) )  =  (/)
3735, 36syl6eq 2521 . . 3  |-  ( -.  M  e.  _V  ->  ( x  e.  B , 
y  e.  B  |->  ( x  oF  .+  y ) )  =  (/) )
3829, 37eqtr4d 2508 . 2  |-  ( -.  M  e.  _V  ->  ( +g  `  A )  =  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) ) )
3923, 38pm2.61i 169 1  |-  ( +g  `  A )  =  ( x  e.  B , 
y  e.  B  |->  ( x  oF  .+  y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 376    = wceq 1452    e. wcel 1904   _Vcvv 3031    u. cun 3388   (/)c0 3722   {csn 3959   {cpr 3961   {ctp 3963   <.cop 3965    X. cxp 4837    o. ccom 4843   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310    oFcof 6548   2c2 10681   ndxcnx 15196   Basecbs 15199   +g cplusg 15268   .rcmulr 15269  Scalarcsca 15271   .scvsca 15272   LMHom clmhm 18320  MEndocmend 36112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-plusg 15281  df-mulr 15282  df-sca 15284  df-vsca 15285  df-lmhm 18323  df-mend 36113
This theorem is referenced by:  mendplusg  36123
  Copyright terms: Public domain W3C validator