Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendplusgfval Structured version   Unicode version

Theorem mendplusgfval 31063
Description: Addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mendplusgfval.a  |-  A  =  (MEndo `  M )
mendplusgfval.b  |-  B  =  ( Base `  A
)
mendplusgfval.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
mendplusgfval  |-  ( +g  `  A )  =  ( x  e.  B , 
y  e.  B  |->  ( x  oF  .+  y ) )
Distinct variable groups:    x, y, B    x, M, y    x,  .+ , y
Allowed substitution hints:    A( x, y)

Proof of Theorem mendplusgfval
StepHypRef Expression
1 mendplusgfval.a . . . . 5  |-  A  =  (MEndo `  M )
2 mendplusgfval.b . . . . . . 7  |-  B  =  ( Base `  A
)
31mendbas 31062 . . . . . . 7  |-  ( M LMHom 
M )  =  (
Base `  A )
42, 3eqtr4i 2499 . . . . . 6  |-  B  =  ( M LMHom  M )
5 mendplusgfval.p . . . . . . . . . 10  |-  .+  =  ( +g  `  M )
6 ofeq 6537 . . . . . . . . . 10  |-  (  .+  =  ( +g  `  M
)  ->  oF  .+  =  oF
( +g  `  M ) )
75, 6ax-mp 5 . . . . . . . . 9  |-  oF  .+  =  oF ( +g  `  M
)
87oveqi 6308 . . . . . . . 8  |-  ( x  oF  .+  y
)  =  ( x  oF ( +g  `  M ) y )
98a1i 11 . . . . . . 7  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  oF  .+  y )  =  ( x  oF ( +g  `  M
) y ) )
109mpt2eq3ia 6357 . . . . . 6  |-  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y
) )  =  ( x  e.  B , 
y  e.  B  |->  ( x  oF ( +g  `  M ) y ) )
11 eqid 2467 . . . . . 6  |-  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y ) )
12 eqid 2467 . . . . . 6  |-  (Scalar `  M )  =  (Scalar `  M )
13 eqid 2467 . . . . . 6  |-  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )  =  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
144, 10, 11, 12, 13mendval 31061 . . . . 5  |-  ( M  e.  _V  ->  (MEndo `  M )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
>. } ) )
151, 14syl5eq 2520 . . . 4  |-  ( M  e.  _V  ->  A  =  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  B , 
y  e.  B  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
>. } ) )
1615fveq2d 5876 . . 3  |-  ( M  e.  _V  ->  ( +g  `  A )  =  ( +g  `  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
>. } ) ) )
17 fvex 5882 . . . . . 6  |-  ( Base `  A )  e.  _V
182, 17eqeltri 2551 . . . . 5  |-  B  e. 
_V
1918, 18mpt2ex 6872 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y
) )  e.  _V
20 eqid 2467 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
>. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
>. } )
2120algaddg 31057 . . . 4  |-  ( ( x  e.  B , 
y  e.  B  |->  ( x  oF  .+  y ) )  e. 
_V  ->  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) )  =  ( +g  `  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  B , 
y  e.  B  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
>. } ) ) )
2219, 21mp1i 12 . . 3  |-  ( M  e.  _V  ->  (
x  e.  B , 
y  e.  B  |->  ( x  oF  .+  y ) )  =  ( +g  `  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y ) )
>. } ) ) )
2316, 22eqtr4d 2511 . 2  |-  ( M  e.  _V  ->  ( +g  `  A )  =  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) ) )
24 fvprc 5866 . . . . . 6  |-  ( -.  M  e.  _V  ->  (MEndo `  M )  =  (/) )
251, 24syl5eq 2520 . . . . 5  |-  ( -.  M  e.  _V  ->  A  =  (/) )
2625fveq2d 5876 . . . 4  |-  ( -.  M  e.  _V  ->  ( +g  `  A )  =  ( +g  `  (/) ) )
27 df-plusg 14585 . . . . 5  |-  +g  = Slot  2
2827str0 14545 . . . 4  |-  (/)  =  ( +g  `  (/) )
2926, 28syl6eqr 2526 . . 3  |-  ( -.  M  e.  _V  ->  ( +g  `  A )  =  (/) )
3025fveq2d 5876 . . . . . 6  |-  ( -.  M  e.  _V  ->  (
Base `  A )  =  ( Base `  (/) ) )
31 base0 14546 . . . . . 6  |-  (/)  =  (
Base `  (/) )
3230, 2, 313eqtr4g 2533 . . . . 5  |-  ( -.  M  e.  _V  ->  B  =  (/) )
33 mpt2eq12 6352 . . . . . 6  |-  ( ( B  =  (/)  /\  B  =  (/) )  ->  (
x  e.  B , 
y  e.  B  |->  ( x  oF  .+  y ) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( x  oF  .+  y
) ) )
3433anidms 645 . . . . 5  |-  ( B  =  (/)  ->  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y
) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( x  oF  .+  y ) ) )
3532, 34syl 16 . . . 4  |-  ( -.  M  e.  _V  ->  ( x  e.  B , 
y  e.  B  |->  ( x  oF  .+  y ) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( x  oF  .+  y
) ) )
36 mpt20 6362 . . . 4  |-  ( x  e.  (/) ,  y  e.  (/)  |->  ( x  oF  .+  y ) )  =  (/)
3735, 36syl6eq 2524 . . 3  |-  ( -.  M  e.  _V  ->  ( x  e.  B , 
y  e.  B  |->  ( x  oF  .+  y ) )  =  (/) )
3829, 37eqtr4d 2511 . 2  |-  ( -.  M  e.  _V  ->  ( +g  `  A )  =  ( x  e.  B ,  y  e.  B  |->  ( x  oF  .+  y ) ) )
3923, 38pm2.61i 164 1  |-  ( +g  `  A )  =  ( x  e.  B , 
y  e.  B  |->  ( x  oF  .+  y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3118    u. cun 3479   (/)c0 3790   {csn 4033   {cpr 4035   {ctp 4037   <.cop 4039    X. cxp 5003    o. ccom 5009   ` cfv 5594  (class class class)co 6295    |-> cmpt2 6297    oFcof 6533   2c2 10597   ndxcnx 14504   Basecbs 14507   +g cplusg 14572   .rcmulr 14573  Scalarcsca 14575   .scvsca 14576   LMHom clmhm 17536  MEndocmend 31053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-n0 10808  df-z 10877  df-uz 11095  df-fz 11685  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-plusg 14585  df-mulr 14586  df-sca 14588  df-vsca 14589  df-lmhm 17539  df-mend 31054
This theorem is referenced by:  mendplusg  31064
  Copyright terms: Public domain W3C validator