Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendlmod Structured version   Unicode version

Theorem mendlmod 36029
Description: The module endomorphism algebra is a left module. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
mendassa.a  |-  A  =  (MEndo `  M )
mendassa.s  |-  S  =  (Scalar `  M )
Assertion
Ref Expression
mendlmod  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  A  e.  LMod )

Proof of Theorem mendlmod
Dummy variables  x  y  z  u  k 
v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4  |-  A  =  (MEndo `  M )
21mendbas 36020 . . 3  |-  ( M LMHom 
M )  =  (
Base `  A )
32a1i 11 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( M LMHom  M )  =  (
Base `  A )
)
4 eqidd 2423 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( +g  `  A )  =  ( +g  `  A
) )
5 mendassa.s . . . 4  |-  S  =  (Scalar `  M )
61, 5mendsca 36025 . . 3  |-  S  =  (Scalar `  A )
76a1i 11 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  S  =  (Scalar `  A )
)
8 eqidd 2423 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( .s `  A )  =  ( .s `  A
) )
9 eqidd 2423 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( Base `  S )  =  ( Base `  S
) )
10 eqidd 2423 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( +g  `  S )  =  ( +g  `  S
) )
11 eqidd 2423 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( .r `  S )  =  ( .r `  S
) )
12 eqidd 2423 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( 1r `  S )  =  ( 1r `  S
) )
13 crngring 17790 . . 3  |-  ( S  e.  CRing  ->  S  e.  Ring )
1413adantl 467 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  S  e.  Ring )
151mendring 36028 . . . 4  |-  ( M  e.  LMod  ->  A  e. 
Ring )
1615adantr 466 . . 3  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  A  e.  Ring )
17 ringgrp 17784 . . 3  |-  ( A  e.  Ring  ->  A  e. 
Grp )
1816, 17syl 17 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  A  e.  Grp )
19 eqid 2422 . . . . 5  |-  ( .s
`  M )  =  ( .s `  M
)
20 eqid 2422 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
21 eqid 2422 . . . . 5  |-  ( Base `  M )  =  (
Base `  M )
22 eqid 2422 . . . . 5  |-  ( .s
`  A )  =  ( .s `  A
)
231, 19, 2, 5, 20, 21, 22mendvsca 36027 . . . 4  |-  ( ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( .s `  A
) y )  =  ( ( ( Base `  M )  X.  {
x } )  oF ( .s `  M ) y ) )
24233adant1 1023 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( .s `  A
) y )  =  ( ( ( Base `  M )  X.  {
x } )  oF ( .s `  M ) y ) )
2521, 19, 5, 20lmhmvsca 18267 . . . 4  |-  ( ( S  e.  CRing  /\  x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M ) )  ->  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) y )  e.  ( M LMHom 
M ) )
26253adant1l 1256 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M ) )  ->  ( (
( Base `  M )  X.  { x } )  oF ( .s
`  M ) y )  e.  ( M LMHom 
M ) )
2724, 26eqeltrd 2507 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( .s `  A
) y )  e.  ( M LMHom  M ) )
28 simpr2 1012 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y  e.  ( M LMHom  M ) )
29 simpr3 1013 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  z  e.  ( M LMHom  M ) )
30 eqid 2422 . . . . . 6  |-  ( +g  `  M )  =  ( +g  `  M )
31 eqid 2422 . . . . . 6  |-  ( +g  `  A )  =  ( +g  `  A )
321, 2, 30, 31mendplusg 36022 . . . . 5  |-  ( ( y  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y
( +g  `  A ) z )  =  ( y  oF ( +g  `  M ) z ) )
3328, 29, 32syl2anc 665 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y ( +g  `  A
) z )  =  ( y  oF ( +g  `  M
) z ) )
3433oveq2d 6321 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) ( y ( +g  `  A ) z ) )  =  ( ( ( Base `  M )  X.  {
x } )  oF ( .s `  M ) ( y  oF ( +g  `  M ) z ) ) )
35 simpr1 1011 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  e.  ( Base `  S
) )
3618adantr 466 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  A  e.  Grp )
372, 31grpcl 16678 . . . . 5  |-  ( ( A  e.  Grp  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y
( +g  `  A ) z )  e.  ( M LMHom  M ) )
3836, 28, 29, 37syl3anc 1264 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y ( +g  `  A
) z )  e.  ( M LMHom  M ) )
391, 19, 2, 5, 20, 21, 22mendvsca 36027 . . . 4  |-  ( ( x  e.  ( Base `  S )  /\  (
y ( +g  `  A
) z )  e.  ( M LMHom  M ) )  ->  ( x
( .s `  A
) ( y ( +g  `  A ) z ) )  =  ( ( ( Base `  M )  X.  {
x } )  oF ( .s `  M ) ( y ( +g  `  A
) z ) ) )
4035, 38, 39syl2anc 665 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) ( y ( +g  `  A
) z ) )  =  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) ( y ( +g  `  A
) z ) ) )
4135, 28, 23syl2anc 665 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) y )  =  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) y ) )
421, 19, 2, 5, 20, 21, 22mendvsca 36027 . . . . . 6  |-  ( ( x  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) )  ->  ( x
( .s `  A
) z )  =  ( ( ( Base `  M )  X.  {
x } )  oF ( .s `  M ) z ) )
4335, 29, 42syl2anc 665 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) z )  =  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) z ) )
4441, 43oveq12d 6323 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .s
`  A ) y )  oF ( +g  `  M ) ( x ( .s
`  A ) z ) )  =  ( ( ( ( Base `  M )  X.  {
x } )  oF ( .s `  M ) y )  oF ( +g  `  M ) ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) z ) ) )
45273adant3r3 1216 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) y )  e.  ( M LMHom  M
) )
46 eleq1 2495 . . . . . . . . 9  |-  ( y  =  z  ->  (
y  e.  ( M LMHom 
M )  <->  z  e.  ( M LMHom  M ) ) )
47463anbi3d 1341 . . . . . . . 8  |-  ( y  =  z  ->  (
( ( M  e. 
LMod  /\  S  e.  CRing )  /\  x  e.  (
Base `  S )  /\  y  e.  ( M LMHom  M ) )  <->  ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( Base `  S
)  /\  z  e.  ( M LMHom  M ) ) ) )
48 oveq2 6313 . . . . . . . . 9  |-  ( y  =  z  ->  (
x ( .s `  A ) y )  =  ( x ( .s `  A ) z ) )
4948eleq1d 2491 . . . . . . . 8  |-  ( y  =  z  ->  (
( x ( .s
`  A ) y )  e.  ( M LMHom 
M )  <->  ( x
( .s `  A
) z )  e.  ( M LMHom  M ) ) )
5047, 49imbi12d 321 . . . . . . 7  |-  ( y  =  z  ->  (
( ( ( M  e.  LMod  /\  S  e. 
CRing )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M ) )  ->  ( x ( .s `  A ) y )  e.  ( M LMHom  M ) )  <-> 
( ( ( M  e.  LMod  /\  S  e. 
CRing )  /\  x  e.  ( Base `  S
)  /\  z  e.  ( M LMHom  M ) )  ->  ( x ( .s `  A ) z )  e.  ( M LMHom  M ) ) ) )
5150, 27chvarv 2072 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) )  ->  ( x
( .s `  A
) z )  e.  ( M LMHom  M ) )
52513adant3r2 1215 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) z )  e.  ( M LMHom  M
) )
531, 2, 30, 31mendplusg 36022 . . . . 5  |-  ( ( ( x ( .s
`  A ) y )  e.  ( M LMHom 
M )  /\  (
x ( .s `  A ) z )  e.  ( M LMHom  M
) )  ->  (
( x ( .s
`  A ) y ) ( +g  `  A
) ( x ( .s `  A ) z ) )  =  ( ( x ( .s `  A ) y )  oF ( +g  `  M
) ( x ( .s `  A ) z ) ) )
5445, 52, 53syl2anc 665 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .s
`  A ) y ) ( +g  `  A
) ( x ( .s `  A ) z ) )  =  ( ( x ( .s `  A ) y )  oF ( +g  `  M
) ( x ( .s `  A ) z ) ) )
55 fvex 5891 . . . . . 6  |-  ( Base `  M )  e.  _V
5655a1i 11 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( Base `  M )  e. 
_V )
57 fconst6g 5789 . . . . . 6  |-  ( x  e.  ( Base `  S
)  ->  ( ( Base `  M )  X. 
{ x } ) : ( Base `  M
) --> ( Base `  S
) )
5835, 57syl 17 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( Base `  M )  X.  { x } ) : ( Base `  M
) --> ( Base `  S
) )
5921, 21lmhmf 18256 . . . . . 6  |-  ( y  e.  ( M LMHom  M
)  ->  y :
( Base `  M ) --> ( Base `  M )
)
6028, 59syl 17 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y : ( Base `  M
) --> ( Base `  M
) )
6121, 21lmhmf 18256 . . . . . 6  |-  ( z  e.  ( M LMHom  M
)  ->  z :
( Base `  M ) --> ( Base `  M )
)
6229, 61syl 17 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  z : ( Base `  M
) --> ( Base `  M
) )
63 simpll 758 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  M  e.  LMod )
6421, 30, 5, 19, 20lmodvsdi 18113 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
w  e.  ( Base `  S )  /\  v  e.  ( Base `  M
)  /\  u  e.  ( Base `  M )
) )  ->  (
w ( .s `  M ) ( v ( +g  `  M
) u ) )  =  ( ( w ( .s `  M
) v ) ( +g  `  M ) ( w ( .s
`  M ) u ) ) )
6563, 64sylan 473 . . . . 5  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  /\  ( w  e.  ( Base `  S )  /\  v  e.  ( Base `  M )  /\  u  e.  ( Base `  M
) ) )  -> 
( w ( .s
`  M ) ( v ( +g  `  M
) u ) )  =  ( ( w ( .s `  M
) v ) ( +g  `  M ) ( w ( .s
`  M ) u ) ) )
6656, 58, 60, 62, 65caofdi 6581 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) ( y  oF ( +g  `  M
) z ) )  =  ( ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y )  oF ( +g  `  M
) ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) z ) ) )
6744, 54, 663eqtr4d 2473 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .s
`  A ) y ) ( +g  `  A
) ( x ( .s `  A ) z ) )  =  ( ( ( Base `  M )  X.  {
x } )  oF ( .s `  M ) ( y  oF ( +g  `  M ) z ) ) )
6834, 40, 673eqtr4d 2473 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) ( y ( +g  `  A
) z ) )  =  ( ( x ( .s `  A
) y ) ( +g  `  A ) ( x ( .s
`  A ) z ) ) )
6955a1i 11 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( Base `  M )  e. 
_V )
70 simpr3 1013 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  z  e.  ( M LMHom  M ) )
7170, 61syl 17 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  z : ( Base `  M
) --> ( Base `  M
) )
72 simpr1 1011 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  e.  ( Base `  S
) )
7372, 57syl 17 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( Base `  M )  X.  { x } ) : ( Base `  M
) --> ( Base `  S
) )
74 simpr2 1012 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  y  e.  ( Base `  S
) )
75 fconst6g 5789 . . . . 5  |-  ( y  e.  ( Base `  S
)  ->  ( ( Base `  M )  X. 
{ y } ) : ( Base `  M
) --> ( Base `  S
) )
7674, 75syl 17 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( Base `  M )  X.  { y } ) : ( Base `  M
) --> ( Base `  S
) )
77 simpll 758 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  M  e.  LMod )
78 eqid 2422 . . . . . 6  |-  ( +g  `  S )  =  ( +g  `  S )
7921, 30, 5, 19, 20, 78lmodvsdir 18114 . . . . 5  |-  ( ( M  e.  LMod  /\  (
w  e.  ( Base `  S )  /\  v  e.  ( Base `  S
)  /\  u  e.  ( Base `  M )
) )  ->  (
( w ( +g  `  S ) v ) ( .s `  M
) u )  =  ( ( w ( .s `  M ) u ) ( +g  `  M ) ( v ( .s `  M
) u ) ) )
8077, 79sylan 473 . . . 4  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  /\  ( w  e.  ( Base `  S
)  /\  v  e.  ( Base `  S )  /\  u  e.  ( Base `  M ) ) )  ->  ( (
w ( +g  `  S
) v ) ( .s `  M ) u )  =  ( ( w ( .s
`  M ) u ) ( +g  `  M
) ( v ( .s `  M ) u ) ) )
8169, 71, 73, 76, 80caofdir 6582 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( ( Base `  M )  X.  {
x } )  oF ( +g  `  S
) ( ( Base `  M )  X.  {
y } ) )  oF ( .s
`  M ) z )  =  ( ( ( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) z )  oF ( +g  `  M
) ( ( (
Base `  M )  X.  { y } )  oF ( .s
`  M ) z ) ) )
8214adantr 466 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  S  e.  Ring )
8320, 78ringacl 17807 . . . . . 6  |-  ( ( S  e.  Ring  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( x
( +g  `  S ) y )  e.  (
Base `  S )
)
8482, 72, 74, 83syl3anc 1264 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( +g  `  S
) y )  e.  ( Base `  S
) )
851, 19, 2, 5, 20, 21, 22mendvsca 36027 . . . . 5  |-  ( ( ( x ( +g  `  S ) y )  e.  ( Base `  S
)  /\  z  e.  ( M LMHom  M ) )  ->  ( ( x ( +g  `  S
) y ) ( .s `  A ) z )  =  ( ( ( Base `  M
)  X.  { ( x ( +g  `  S
) y ) } )  oF ( .s `  M ) z ) )
8684, 70, 85syl2anc 665 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( +g  `  S ) y ) ( .s `  A
) z )  =  ( ( ( Base `  M )  X.  {
( x ( +g  `  S ) y ) } )  oF ( .s `  M
) z ) )
8769, 72, 74ofc12 6570 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( Base `  M
)  X.  { x } )  oF ( +g  `  S
) ( ( Base `  M )  X.  {
y } ) )  =  ( ( Base `  M )  X.  {
( x ( +g  `  S ) y ) } ) )
8887oveq1d 6320 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( ( Base `  M )  X.  {
x } )  oF ( +g  `  S
) ( ( Base `  M )  X.  {
y } ) )  oF ( .s
`  M ) z )  =  ( ( ( Base `  M
)  X.  { ( x ( +g  `  S
) y ) } )  oF ( .s `  M ) z ) )
8986, 88eqtr4d 2466 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( +g  `  S ) y ) ( .s `  A
) z )  =  ( ( ( (
Base `  M )  X.  { x } )  oF ( +g  `  S ) ( (
Base `  M )  X.  { y } ) )  oF ( .s `  M ) z ) )
90513adant3r2 1215 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) z )  e.  ( M LMHom  M
) )
91 eleq1 2495 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  ( Base `  S )  <->  y  e.  ( Base `  S )
) )
92913anbi2d 1340 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( M  e. 
LMod  /\  S  e.  CRing )  /\  x  e.  (
Base `  S )  /\  z  e.  ( M LMHom  M ) )  <->  ( ( M  e.  LMod  /\  S  e.  CRing )  /\  y  e.  ( Base `  S
)  /\  z  e.  ( M LMHom  M ) ) ) )
93 oveq1 6312 . . . . . . . . 9  |-  ( x  =  y  ->  (
x ( .s `  A ) z )  =  ( y ( .s `  A ) z ) )
9493eleq1d 2491 . . . . . . . 8  |-  ( x  =  y  ->  (
( x ( .s
`  A ) z )  e.  ( M LMHom 
M )  <->  ( y
( .s `  A
) z )  e.  ( M LMHom  M ) ) )
9592, 94imbi12d 321 . . . . . . 7  |-  ( x  =  y  ->  (
( ( ( M  e.  LMod  /\  S  e. 
CRing )  /\  x  e.  ( Base `  S
)  /\  z  e.  ( M LMHom  M ) )  ->  ( x ( .s `  A ) z )  e.  ( M LMHom  M ) )  <-> 
( ( ( M  e.  LMod  /\  S  e. 
CRing )  /\  y  e.  ( Base `  S
)  /\  z  e.  ( M LMHom  M ) )  ->  ( y ( .s `  A ) z )  e.  ( M LMHom  M ) ) ) )
9695, 51chvarv 2072 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) )  ->  ( y
( .s `  A
) z )  e.  ( M LMHom  M ) )
97963adant3r1 1214 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y ( .s `  A ) z )  e.  ( M LMHom  M
) )
981, 2, 30, 31mendplusg 36022 . . . . 5  |-  ( ( ( x ( .s
`  A ) z )  e.  ( M LMHom 
M )  /\  (
y ( .s `  A ) z )  e.  ( M LMHom  M
) )  ->  (
( x ( .s
`  A ) z ) ( +g  `  A
) ( y ( .s `  A ) z ) )  =  ( ( x ( .s `  A ) z )  oF ( +g  `  M
) ( y ( .s `  A ) z ) ) )
9990, 97, 98syl2anc 665 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .s
`  A ) z ) ( +g  `  A
) ( y ( .s `  A ) z ) )  =  ( ( x ( .s `  A ) z )  oF ( +g  `  M
) ( y ( .s `  A ) z ) ) )
10072, 70, 42syl2anc 665 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) z )  =  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) z ) )
1011, 19, 2, 5, 20, 21, 22mendvsca 36027 . . . . . 6  |-  ( ( y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) )  ->  ( y
( .s `  A
) z )  =  ( ( ( Base `  M )  X.  {
y } )  oF ( .s `  M ) z ) )
10274, 70, 101syl2anc 665 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y ( .s `  A ) z )  =  ( ( (
Base `  M )  X.  { y } )  oF ( .s
`  M ) z ) )
103100, 102oveq12d 6323 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .s
`  A ) z )  oF ( +g  `  M ) ( y ( .s
`  A ) z ) )  =  ( ( ( ( Base `  M )  X.  {
x } )  oF ( .s `  M ) z )  oF ( +g  `  M ) ( ( ( Base `  M
)  X.  { y } )  oF ( .s `  M
) z ) ) )
10499, 103eqtrd 2463 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .s
`  A ) z ) ( +g  `  A
) ( y ( .s `  A ) z ) )  =  ( ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) z )  oF ( +g  `  M ) ( ( ( Base `  M )  X.  {
y } )  oF ( .s `  M ) z ) ) )
10581, 89, 1043eqtr4d 2473 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( +g  `  S ) y ) ( .s `  A
) z )  =  ( ( x ( .s `  A ) z ) ( +g  `  A ) ( y ( .s `  A
) z ) ) )
106 ovex 6333 . . . . 5  |-  ( x ( .r `  S
) y )  e. 
_V
107106a1i 11 . . . 4  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  /\  k  e.  (
Base `  M )
)  ->  ( x
( .r `  S
) y )  e. 
_V )
10871ffvelrnda 6037 . . . 4  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  /\  k  e.  (
Base `  M )
)  ->  ( z `  k )  e.  (
Base `  M )
)
109 fconstmpt 4897 . . . . 5  |-  ( (
Base `  M )  X.  { ( x ( .r `  S ) y ) } )  =  ( k  e.  ( Base `  M
)  |->  ( x ( .r `  S ) y ) )
110109a1i 11 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( Base `  M )  X.  { ( x ( .r `  S ) y ) } )  =  ( k  e.  ( Base `  M
)  |->  ( x ( .r `  S ) y ) ) )
11171feqmptd 5934 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  z  =  ( k  e.  ( Base `  M
)  |->  ( z `  k ) ) )
11269, 107, 108, 110, 111offval2 6562 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( Base `  M
)  X.  { ( x ( .r `  S ) y ) } )  oF ( .s `  M
) z )  =  ( k  e.  (
Base `  M )  |->  ( ( x ( .r `  S ) y ) ( .s
`  M ) ( z `  k ) ) ) )
113 eqid 2422 . . . . . 6  |-  ( .r
`  S )  =  ( .r `  S
)
11420, 113ringcl 17793 . . . . 5  |-  ( ( S  e.  Ring  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( x
( .r `  S
) y )  e.  ( Base `  S
) )
11582, 72, 74, 114syl3anc 1264 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .r `  S ) y )  e.  ( Base `  S
) )
1161, 19, 2, 5, 20, 21, 22mendvsca 36027 . . . 4  |-  ( ( ( x ( .r
`  S ) y )  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) )  ->  ( (
x ( .r `  S ) y ) ( .s `  A
) z )  =  ( ( ( Base `  M )  X.  {
( x ( .r
`  S ) y ) } )  oF ( .s `  M ) z ) )
117115, 70, 116syl2anc 665 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .r
`  S ) y ) ( .s `  A ) z )  =  ( ( (
Base `  M )  X.  { ( x ( .r `  S ) y ) } )  oF ( .s
`  M ) z ) )
11872adantr 466 . . . . 5  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  /\  k  e.  (
Base `  M )
)  ->  x  e.  ( Base `  S )
)
119 ovex 6333 . . . . . 6  |-  ( y ( .s `  M
) ( z `  k ) )  e. 
_V
120119a1i 11 . . . . 5  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  /\  k  e.  (
Base `  M )
)  ->  ( y
( .s `  M
) ( z `  k ) )  e. 
_V )
121 fconstmpt 4897 . . . . . 6  |-  ( (
Base `  M )  X.  { x } )  =  ( k  e.  ( Base `  M
)  |->  x )
122121a1i 11 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( Base `  M )  X.  { x } )  =  ( k  e.  ( Base `  M
)  |->  x ) )
123 simplr2 1048 . . . . . . 7  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  /\  k  e.  (
Base `  M )
)  ->  y  e.  ( Base `  S )
)
124 fconstmpt 4897 . . . . . . . 8  |-  ( (
Base `  M )  X.  { y } )  =  ( k  e.  ( Base `  M
)  |->  y )
125124a1i 11 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( Base `  M )  X.  { y } )  =  ( k  e.  ( Base `  M
)  |->  y ) )
12669, 123, 108, 125, 111offval2 6562 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( Base `  M
)  X.  { y } )  oF ( .s `  M
) z )  =  ( k  e.  (
Base `  M )  |->  ( y ( .s
`  M ) ( z `  k ) ) ) )
127102, 126eqtrd 2463 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y ( .s `  A ) z )  =  ( k  e.  ( Base `  M
)  |->  ( y ( .s `  M ) ( z `  k
) ) ) )
12869, 118, 120, 122, 127offval2 6562 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) ( y ( .s `  A ) z ) )  =  ( k  e.  (
Base `  M )  |->  ( x ( .s
`  M ) ( y ( .s `  M ) ( z `
 k ) ) ) ) )
1291, 19, 2, 5, 20, 21, 22mendvsca 36027 . . . . 5  |-  ( ( x  e.  ( Base `  S )  /\  (
y ( .s `  A ) z )  e.  ( M LMHom  M
) )  ->  (
x ( .s `  A ) ( y ( .s `  A
) z ) )  =  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) ( y ( .s `  A ) z ) ) )
13072, 97, 129syl2anc 665 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) ( y ( .s `  A
) z ) )  =  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) ( y ( .s `  A ) z ) ) )
13177adantr 466 . . . . . 6  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  /\  k  e.  (
Base `  M )
)  ->  M  e.  LMod )
13221, 5, 19, 20, 113lmodvsass 18115 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
)  /\  ( z `  k )  e.  (
Base `  M )
) )  ->  (
( x ( .r
`  S ) y ) ( .s `  M ) ( z `
 k ) )  =  ( x ( .s `  M ) ( y ( .s
`  M ) ( z `  k ) ) ) )
133131, 118, 123, 108, 132syl13anc 1266 . . . . 5  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  /\  k  e.  (
Base `  M )
)  ->  ( (
x ( .r `  S ) y ) ( .s `  M
) ( z `  k ) )  =  ( x ( .s
`  M ) ( y ( .s `  M ) ( z `
 k ) ) ) )
134133mpteq2dva 4510 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
k  e.  ( Base `  M )  |->  ( ( x ( .r `  S ) y ) ( .s `  M
) ( z `  k ) ) )  =  ( k  e.  ( Base `  M
)  |->  ( x ( .s `  M ) ( y ( .s
`  M ) ( z `  k ) ) ) ) )
135128, 130, 1343eqtr4d 2473 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) ( y ( .s `  A
) z ) )  =  ( k  e.  ( Base `  M
)  |->  ( ( x ( .r `  S
) y ) ( .s `  M ) ( z `  k
) ) ) )
136112, 117, 1353eqtr4d 2473 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .r
`  S ) y ) ( .s `  A ) z )  =  ( x ( .s `  A ) ( y ( .s
`  A ) z ) ) )
13714adantr 466 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  ->  S  e.  Ring )
138 eqid 2422 . . . . . 6  |-  ( 1r
`  S )  =  ( 1r `  S
)
13920, 138ringidcl 17800 . . . . 5  |-  ( S  e.  Ring  ->  ( 1r
`  S )  e.  ( Base `  S
) )
140137, 139syl 17 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  ->  ( 1r `  S )  e.  ( Base `  S
) )
1411, 19, 2, 5, 20, 21, 22mendvsca 36027 . . . 4  |-  ( ( ( 1r `  S
)  e.  ( Base `  S )  /\  x  e.  ( M LMHom  M ) )  ->  ( ( 1r `  S ) ( .s `  A ) x )  =  ( ( ( Base `  M
)  X.  { ( 1r `  S ) } )  oF ( .s `  M
) x ) )
142140, 141sylancom 671 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  ->  (
( 1r `  S
) ( .s `  A ) x )  =  ( ( (
Base `  M )  X.  { ( 1r `  S ) } )  oF ( .s
`  M ) x ) )
14355a1i 11 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  ->  ( Base `  M )  e. 
_V )
14421, 21lmhmf 18256 . . . . 5  |-  ( x  e.  ( M LMHom  M
)  ->  x :
( Base `  M ) --> ( Base `  M )
)
145144adantl 467 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  ->  x : ( Base `  M
) --> ( Base `  M
) )
146 simpll 758 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  ->  M  e.  LMod )
14721, 5, 19, 138lmodvs1 18118 . . . . 5  |-  ( ( M  e.  LMod  /\  y  e.  ( Base `  M
) )  ->  (
( 1r `  S
) ( .s `  M ) y )  =  y )
148146, 147sylan 473 . . . 4  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  /\  y  e.  (
Base `  M )
)  ->  ( ( 1r `  S ) ( .s `  M ) y )  =  y )
149143, 145, 140, 148caofid0l 6573 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  ->  (
( ( Base `  M
)  X.  { ( 1r `  S ) } )  oF ( .s `  M
) x )  =  x )
150142, 149eqtrd 2463 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  ->  (
( 1r `  S
) ( .s `  A ) x )  =  x )
1513, 4, 7, 8, 9, 10, 11, 12, 14, 18, 27, 68, 105, 136, 150islmodd 18096 1  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  A  e.  LMod )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   _Vcvv 3080   {csn 3998    |-> cmpt 4482    X. cxp 4851   -->wf 5597   ` cfv 5601  (class class class)co 6305    oFcof 6543   Basecbs 15120   +g cplusg 15189   .rcmulr 15190  Scalarcsca 15192   .scvsca 15193   Grpcgrp 16668   1rcur 17734   Ringcrg 17779   CRingccrg 17780   LModclmod 18090   LMHom clmhm 18241  MEndocmend 36011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-oadd 7197  df-er 7374  df-map 7485  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-n0 10877  df-z 10945  df-uz 11167  df-fz 11792  df-struct 15122  df-ndx 15123  df-slot 15124  df-base 15125  df-sets 15126  df-plusg 15202  df-mulr 15203  df-sca 15205  df-vsca 15206  df-0g 15339  df-mgm 16487  df-sgrp 16526  df-mnd 16536  df-mhm 16581  df-grp 16672  df-minusg 16673  df-ghm 16880  df-cmn 17431  df-abl 17432  df-mgp 17723  df-ur 17735  df-ring 17781  df-cring 17782  df-lmod 18092  df-lmhm 18244  df-mend 36012
This theorem is referenced by:  mendassa  36030
  Copyright terms: Public domain W3C validator