Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendassa Structured version   Unicode version

Theorem mendassa 29689
Description: The module endomorphism algebra is an algebra. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
mendassa.a  |-  A  =  (MEndo `  M )
mendassa.s  |-  S  =  (Scalar `  M )
Assertion
Ref Expression
mendassa  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  A  e. AssAlg )

Proof of Theorem mendassa
Dummy variables  x  y  z  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4  |-  A  =  (MEndo `  M )
21mendbas 29679 . . 3  |-  ( M LMHom 
M )  =  (
Base `  A )
32a1i 11 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( M LMHom  M )  =  (
Base `  A )
)
4 mendassa.s . . . 4  |-  S  =  (Scalar `  M )
51, 4mendsca 29684 . . 3  |-  S  =  (Scalar `  A )
65a1i 11 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  S  =  (Scalar `  A )
)
7 eqidd 2452 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( Base `  S )  =  ( Base `  S
) )
8 eqidd 2452 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( .s `  A )  =  ( .s `  A
) )
9 eqidd 2452 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( .r `  A )  =  ( .r `  A
) )
101, 4mendlmod 29688 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  A  e.  LMod )
111mendrng 29687 . . 3  |-  ( M  e.  LMod  ->  A  e. 
Ring )
1211adantr 465 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  A  e.  Ring )
13 simpr 461 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  S  e.  CRing )
14 simpr3 996 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  z  e.  ( M LMHom  M ) )
15 eqid 2451 . . . . . . . 8  |-  ( Base `  M )  =  (
Base `  M )
1615, 15lmhmf 17221 . . . . . . 7  |-  ( z  e.  ( M LMHom  M
)  ->  z :
( Base `  M ) --> ( Base `  M )
)
1714, 16syl 16 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  z : ( Base `  M
) --> ( Base `  M
) )
1817ffvelrnda 5942 . . . . 5  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  /\  v  e.  ( Base `  M ) )  -> 
( z `  v
)  e.  ( Base `  M ) )
1917feqmptd 5843 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  z  =  ( v  e.  ( Base `  M
)  |->  ( z `  v ) ) )
20 simpr1 994 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  e.  ( Base `  S
) )
21 simpr2 995 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y  e.  ( M LMHom  M ) )
22 eqid 2451 . . . . . . . 8  |-  ( .s
`  M )  =  ( .s `  M
)
23 eqid 2451 . . . . . . . 8  |-  ( Base `  S )  =  (
Base `  S )
24 eqid 2451 . . . . . . . 8  |-  ( .s
`  A )  =  ( .s `  A
)
251, 22, 2, 4, 23, 15, 24mendvsca 29686 . . . . . . 7  |-  ( ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( .s `  A
) y )  =  ( ( ( Base `  M )  X.  {
x } )  oF ( .s `  M ) y ) )
2620, 21, 25syl2anc 661 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) y )  =  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) y ) )
27 fvex 5799 . . . . . . . 8  |-  ( Base `  M )  e.  _V
2827a1i 11 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( Base `  M )  e. 
_V )
29 simplr1 1030 . . . . . . 7  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  /\  w  e.  ( Base `  M ) )  ->  x  e.  ( Base `  S ) )
30 fvex 5799 . . . . . . . 8  |-  ( y `
 w )  e. 
_V
3130a1i 11 . . . . . . 7  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  /\  w  e.  ( Base `  M ) )  -> 
( y `  w
)  e.  _V )
32 fconstmpt 4980 . . . . . . . 8  |-  ( (
Base `  M )  X.  { x } )  =  ( w  e.  ( Base `  M
)  |->  x )
3332a1i 11 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( Base `  M )  X.  { x } )  =  ( w  e.  ( Base `  M
)  |->  x ) )
3415, 15lmhmf 17221 . . . . . . . . 9  |-  ( y  e.  ( M LMHom  M
)  ->  y :
( Base `  M ) --> ( Base `  M )
)
3521, 34syl 16 . . . . . . . 8  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y : ( Base `  M
) --> ( Base `  M
) )
3635feqmptd 5843 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y  =  ( w  e.  ( Base `  M
)  |->  ( y `  w ) ) )
3728, 29, 31, 33, 36offval2 6436 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) y )  =  ( w  e.  (
Base `  M )  |->  ( x ( .s
`  M ) ( y `  w ) ) ) )
3826, 37eqtrd 2492 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) y )  =  ( w  e.  ( Base `  M
)  |->  ( x ( .s `  M ) ( y `  w
) ) ) )
39 fveq2 5789 . . . . . 6  |-  ( w  =  ( z `  v )  ->  (
y `  w )  =  ( y `  ( z `  v
) ) )
4039oveq2d 6206 . . . . 5  |-  ( w  =  ( z `  v )  ->  (
x ( .s `  M ) ( y `
 w ) )  =  ( x ( .s `  M ) ( y `  (
z `  v )
) ) )
4118, 19, 38, 40fmptco 5975 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .s
`  A ) y )  o.  z )  =  ( v  e.  ( Base `  M
)  |->  ( x ( .s `  M ) ( y `  (
z `  v )
) ) ) )
42 simplr1 1030 . . . . 5  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  /\  v  e.  ( Base `  M ) )  ->  x  e.  ( Base `  S ) )
43 fvex 5799 . . . . . 6  |-  ( y `
 ( z `  v ) )  e. 
_V
4443a1i 11 . . . . 5  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  /\  v  e.  ( Base `  M ) )  -> 
( y `  (
z `  v )
)  e.  _V )
45 fconstmpt 4980 . . . . . 6  |-  ( (
Base `  M )  X.  { x } )  =  ( v  e.  ( Base `  M
)  |->  x )
4645a1i 11 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( Base `  M )  X.  { x } )  =  ( v  e.  ( Base `  M
)  |->  x ) )
47 eqid 2451 . . . . . . . 8  |-  ( .r
`  A )  =  ( .r `  A
)
481, 2, 47mendmulr 29683 . . . . . . 7  |-  ( ( y  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y
( .r `  A
) z )  =  ( y  o.  z
) )
4921, 14, 48syl2anc 661 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y ( .r `  A ) z )  =  ( y  o.  z ) )
50 fcompt 5978 . . . . . . 7  |-  ( ( y : ( Base `  M ) --> ( Base `  M )  /\  z : ( Base `  M
) --> ( Base `  M
) )  ->  (
y  o.  z )  =  ( v  e.  ( Base `  M
)  |->  ( y `  ( z `  v
) ) ) )
5135, 17, 50syl2anc 661 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y  o.  z )  =  ( v  e.  ( Base `  M
)  |->  ( y `  ( z `  v
) ) ) )
5249, 51eqtrd 2492 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y ( .r `  A ) z )  =  ( v  e.  ( Base `  M
)  |->  ( y `  ( z `  v
) ) ) )
5328, 42, 44, 46, 52offval2 6436 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) ( y ( .r `  A ) z ) )  =  ( v  e.  (
Base `  M )  |->  ( x ( .s
`  M ) ( y `  ( z `
 v ) ) ) ) )
5441, 53eqtr4d 2495 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .s
`  A ) y )  o.  z )  =  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) ( y ( .r `  A ) z ) ) )
5510adantr 465 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  A  e.  LMod )
562, 5, 24, 23lmodvscl 17071 . . . . 5  |-  ( ( A  e.  LMod  /\  x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M ) )  ->  ( x ( .s `  A ) y )  e.  ( M LMHom  M ) )
5755, 20, 21, 56syl3anc 1219 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) y )  e.  ( M LMHom  M
) )
581, 2, 47mendmulr 29683 . . . 4  |-  ( ( ( x ( .s
`  A ) y )  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( (
x ( .s `  A ) y ) ( .r `  A
) z )  =  ( ( x ( .s `  A ) y )  o.  z
) )
5957, 14, 58syl2anc 661 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .s
`  A ) y ) ( .r `  A ) z )  =  ( ( x ( .s `  A
) y )  o.  z ) )
6012adantr 465 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  A  e.  Ring )
612, 47rngcl 16764 . . . . 5  |-  ( ( A  e.  Ring  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y ( .r `  A ) z )  e.  ( M LMHom  M ) )
6260, 21, 14, 61syl3anc 1219 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y ( .r `  A ) z )  e.  ( M LMHom  M
) )
631, 22, 2, 4, 23, 15, 24mendvsca 29686 . . . 4  |-  ( ( x  e.  ( Base `  S )  /\  (
y ( .r `  A ) z )  e.  ( M LMHom  M
) )  ->  (
x ( .s `  A ) ( y ( .r `  A
) z ) )  =  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) ( y ( .r `  A ) z ) ) )
6420, 62, 63syl2anc 661 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) ( y ( .r `  A
) z ) )  =  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) ( y ( .r `  A ) z ) ) )
6554, 59, 643eqtr4d 2502 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .s
`  A ) y ) ( .r `  A ) z )  =  ( x ( .s `  A ) ( y ( .r
`  A ) z ) ) )
66 simplr2 1031 . . . . . 6  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  /\  v  e.  ( Base `  M ) )  -> 
y  e.  ( M LMHom 
M ) )
674, 23, 15, 22, 22lmhmlin 17222 . . . . . 6  |-  ( ( y  e.  ( M LMHom 
M )  /\  x  e.  ( Base `  S
)  /\  ( z `  v )  e.  (
Base `  M )
)  ->  ( y `  ( x ( .s
`  M ) ( z `  v ) ) )  =  ( x ( .s `  M ) ( y `
 ( z `  v ) ) ) )
6866, 42, 18, 67syl3anc 1219 . . . . 5  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  /\  v  e.  ( Base `  M ) )  -> 
( y `  (
x ( .s `  M ) ( z `
 v ) ) )  =  ( x ( .s `  M
) ( y `  ( z `  v
) ) ) )
6968mpteq2dva 4476 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
v  e.  ( Base `  M )  |->  ( y `
 ( x ( .s `  M ) ( z `  v
) ) ) )  =  ( v  e.  ( Base `  M
)  |->  ( x ( .s `  M ) ( y `  (
z `  v )
) ) ) )
70 simplll 757 . . . . . 6  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  /\  v  e.  ( Base `  M ) )  ->  M  e.  LMod )
7115, 4, 22, 23lmodvscl 17071 . . . . . 6  |-  ( ( M  e.  LMod  /\  x  e.  ( Base `  S
)  /\  ( z `  v )  e.  (
Base `  M )
)  ->  ( x
( .s `  M
) ( z `  v ) )  e.  ( Base `  M
) )
7270, 42, 18, 71syl3anc 1219 . . . . 5  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  /\  v  e.  ( Base `  M ) )  -> 
( x ( .s
`  M ) ( z `  v ) )  e.  ( Base `  M ) )
731, 22, 2, 4, 23, 15, 24mendvsca 29686 . . . . . . 7  |-  ( ( x  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) )  ->  ( x
( .s `  A
) z )  =  ( ( ( Base `  M )  X.  {
x } )  oF ( .s `  M ) z ) )
7420, 14, 73syl2anc 661 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) z )  =  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) z ) )
75 fvex 5799 . . . . . . . 8  |-  ( z `
 v )  e. 
_V
7675a1i 11 . . . . . . 7  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  /\  v  e.  ( Base `  M ) )  -> 
( z `  v
)  e.  _V )
7728, 42, 76, 46, 19offval2 6436 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( Base `  M
)  X.  { x } )  oF ( .s `  M
) z )  =  ( v  e.  (
Base `  M )  |->  ( x ( .s
`  M ) ( z `  v ) ) ) )
7874, 77eqtrd 2492 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) z )  =  ( v  e.  ( Base `  M
)  |->  ( x ( .s `  M ) ( z `  v
) ) ) )
79 fveq2 5789 . . . . 5  |-  ( w  =  ( x ( .s `  M ) ( z `  v
) )  ->  (
y `  w )  =  ( y `  ( x ( .s
`  M ) ( z `  v ) ) ) )
8072, 78, 36, 79fmptco 5975 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y  o.  ( x ( .s `  A
) z ) )  =  ( v  e.  ( Base `  M
)  |->  ( y `  ( x ( .s
`  M ) ( z `  v ) ) ) ) )
8169, 80, 533eqtr4d 2502 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y  o.  ( x ( .s `  A
) z ) )  =  ( ( (
Base `  M )  X.  { x } )  oF ( .s
`  M ) ( y ( .r `  A ) z ) ) )
822, 5, 24, 23lmodvscl 17071 . . . . 5  |-  ( ( A  e.  LMod  /\  x  e.  ( Base `  S
)  /\  z  e.  ( M LMHom  M ) )  ->  ( x ( .s `  A ) z )  e.  ( M LMHom  M ) )
8355, 20, 14, 82syl3anc 1219 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) z )  e.  ( M LMHom  M
) )
841, 2, 47mendmulr 29683 . . . 4  |-  ( ( y  e.  ( M LMHom 
M )  /\  (
x ( .s `  A ) z )  e.  ( M LMHom  M
) )  ->  (
y ( .r `  A ) ( x ( .s `  A
) z ) )  =  ( y  o.  ( x ( .s
`  A ) z ) ) )
8521, 83, 84syl2anc 661 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y ( .r `  A ) ( x ( .s `  A
) z ) )  =  ( y  o.  ( x ( .s
`  A ) z ) ) )
8681, 85, 643eqtr4d 2502 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y ( .r `  A ) ( x ( .s `  A
) z ) )  =  ( x ( .s `  A ) ( y ( .r
`  A ) z ) ) )
873, 6, 7, 8, 9, 10, 12, 13, 65, 86isassad 17500 1  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  A  e. AssAlg )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   _Vcvv 3068   {csn 3975    |-> cmpt 4448    X. cxp 4936    o. ccom 4942   -->wf 5512   ` cfv 5516  (class class class)co 6190    oFcof 6418   Basecbs 14276   .rcmulr 14341  Scalarcsca 14343   .scvsca 14344   Ringcrg 16751   CRingccrg 16752   LModclmod 17054   LMHom clmhm 17206  AssAlgcasa 17487  MEndocmend 29670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-of 6420  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-1o 7020  df-oadd 7024  df-er 7201  df-map 7316  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-nn 10424  df-2 10481  df-3 10482  df-4 10483  df-5 10484  df-6 10485  df-n0 10681  df-z 10748  df-uz 10963  df-fz 11539  df-struct 14278  df-ndx 14279  df-slot 14280  df-base 14281  df-sets 14282  df-plusg 14353  df-mulr 14354  df-sca 14356  df-vsca 14357  df-0g 14482  df-mnd 15517  df-mhm 15566  df-grp 15647  df-minusg 15648  df-ghm 15847  df-cmn 16383  df-abl 16384  df-mgp 16697  df-ur 16709  df-rng 16753  df-cring 16754  df-lmod 17056  df-lmhm 17209  df-assa 17490  df-mend 29671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator