Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetval2lem Structured version   Unicode version

Theorem meetval2lem 15526
 Description: Lemma for meetval2 15527 and meeteu 15528. (Contributed by NM, 12-Sep-2018.) TODO: combine this through meeteu into meetlem?
Hypotheses
Ref Expression
meetval2.b
meetval2.l
meetval2.m
meetval2.k
meetval2.x
meetval2.y
Assertion
Ref Expression
meetval2lem
Distinct variable groups:   ,,   , ,   ,,,   ,   ,,,   ,,,
Allowed substitution hints:   (,,)   ()   (,)   ()   (,,)

Proof of Theorem meetval2lem
StepHypRef Expression
1 breq2 4441 . . 3
2 breq2 4441 . . 3
31, 2ralprg 4063 . 2
4 breq2 4441 . . . . 5
5 breq2 4441 . . . . 5
64, 5ralprg 4063 . . . 4
76imbi1d 317 . . 3
87ralbidv 2882 . 2
93, 8anbi12d 710 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wceq 1383   wcel 1804  wral 2793  cpr 4016   class class class wbr 4437  cfv 5578  cbs 14509  cple 14581  cmee 15448 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ral 2798  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-br 4438 This theorem is referenced by:  meetval2  15527  meeteu  15528
 Copyright terms: Public domain W3C validator