Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measdivcstOLD Structured version   Unicode version

Theorem measdivcstOLD 28432
Description: Division of a measure by a positive constant is a measure. (Contributed by Thierry Arnoux, 25-Dec-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
measdivcstOLD  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  e.  (measures `  S ) )
Distinct variable groups:    x, A    x, M    x, S

Proof of Theorem measdivcstOLD
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 5606 . . . . . 6  |-  Fun  (
x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) )
2 ovex 6298 . . . . . . . 8  |-  ( ( M `  x ) /𝑒  A )  e.  _V
32rgenw 2815 . . . . . . 7  |-  A. x  e.  S  ( ( M `  x ) /𝑒  A
)  e.  _V
4 dmmptg 5487 . . . . . . 7  |-  ( A. x  e.  S  (
( M `  x
) /𝑒 
A )  e.  _V  ->  dom  ( x  e.  S  |->  ( ( M `
 x ) /𝑒  A ) )  =  S )
53, 4ax-mp 5 . . . . . 6  |-  dom  (
x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) )  =  S
6 df-fn 5573 . . . . . 6  |-  ( ( x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) )  Fn  S  <->  ( Fun  (
x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) )  /\  dom  ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  =  S ) )
71, 5, 6mpbir2an 918 . . . . 5  |-  ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  Fn  S
87a1i 11 . . . 4  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  Fn  S
)
9 vex 3109 . . . . . . 7  |-  y  e. 
_V
10 eqid 2454 . . . . . . . 8  |-  ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  =  ( x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) )
1110elrnmpt 5238 . . . . . . 7  |-  ( y  e.  _V  ->  (
y  e.  ran  (
x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) )  <->  E. x  e.  S  y  =  ( ( M `  x ) /𝑒  A ) ) )
129, 11ax-mp 5 . . . . . 6  |-  ( y  e.  ran  ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  <->  E. x  e.  S  y  =  ( ( M `  x ) /𝑒  A ) )
13 measfrge0 28411 . . . . . . . . . . 11  |-  ( M  e.  (measures `  S
)  ->  M : S
--> ( 0 [,] +oo ) )
14 ffvelrn 6005 . . . . . . . . . . 11  |-  ( ( M : S --> ( 0 [,] +oo )  /\  x  e.  S )  ->  ( M `  x
)  e.  ( 0 [,] +oo ) )
1513, 14sylan 469 . . . . . . . . . 10  |-  ( ( M  e.  (measures `  S
)  /\  x  e.  S )  ->  ( M `  x )  e.  ( 0 [,] +oo ) )
1615adantlr 712 . . . . . . . . 9  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  x  e.  S )  ->  ( M `  x )  e.  ( 0 [,] +oo ) )
17 simplr 753 . . . . . . . . 9  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  x  e.  S )  ->  A  e.  RR+ )
1816, 17xrpxdivcld 27865 . . . . . . . 8  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  x  e.  S )  ->  (
( M `  x
) /𝑒 
A )  e.  ( 0 [,] +oo )
)
19 eleq1a 2537 . . . . . . . 8  |-  ( ( ( M `  x
) /𝑒 
A )  e.  ( 0 [,] +oo )  ->  ( y  =  ( ( M `  x
) /𝑒 
A )  ->  y  e.  ( 0 [,] +oo ) ) )
2018, 19syl 16 . . . . . . 7  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  x  e.  S )  ->  (
y  =  ( ( M `  x ) /𝑒  A )  ->  y  e.  ( 0 [,] +oo ) ) )
2120rexlimdva 2946 . . . . . 6  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( E. x  e.  S  y  =  ( ( M `
 x ) /𝑒  A )  ->  y  e.  ( 0 [,] +oo )
) )
2212, 21syl5bi 217 . . . . 5  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( y  e.  ran  ( x  e.  S  |->  ( ( M `
 x ) /𝑒  A ) )  ->  y  e.  ( 0 [,] +oo ) ) )
2322ssrdv 3495 . . . 4  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ran  ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  C_  (
0 [,] +oo )
)
24 df-f 5574 . . . 4  |-  ( ( x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) ) : S --> ( 0 [,] +oo )  <->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  Fn  S  /\  ran  ( x  e.  S  |->  ( ( M `
 x ) /𝑒  A ) )  C_  ( 0 [,] +oo ) ) )
258, 23, 24sylanbrc 662 . . 3  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) : S --> ( 0 [,] +oo ) )
26 measbase 28405 . . . . . . . 8  |-  ( M  e.  (measures `  S
)  ->  S  e.  U.
ran sigAlgebra )
27 0elsiga 28344 . . . . . . . 8  |-  ( S  e.  U. ran sigAlgebra  ->  (/)  e.  S
)
2826, 27syl 16 . . . . . . 7  |-  ( M  e.  (measures `  S
)  ->  (/)  e.  S
)
2928adantr 463 . . . . . 6  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  (/)  e.  S
)
30 ovex 6298 . . . . . 6  |-  ( ( M `  (/) ) /𝑒  A )  e.  _V
3129, 30jctir 536 . . . . 5  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( (/)  e.  S  /\  ( ( M `  (/) ) /𝑒  A )  e.  _V ) )
32 fveq2 5848 . . . . . . 7  |-  ( x  =  (/)  ->  ( M `
 x )  =  ( M `  (/) ) )
3332oveq1d 6285 . . . . . 6  |-  ( x  =  (/)  ->  ( ( M `  x ) /𝑒  A )  =  ( ( M `  (/) ) /𝑒  A ) )
3433, 10fvmptg 5929 . . . . 5  |-  ( (
(/)  e.  S  /\  ( ( M `  (/) ) /𝑒  A )  e.  _V )  ->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  (/) )  =  ( ( M `  (/) ) /𝑒  A ) )
3531, 34syl 16 . . . 4  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( (
x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) ) `  (/) )  =  ( ( M `  (/) ) /𝑒  A ) )
36 measvnul 28414 . . . . . 6  |-  ( M  e.  (measures `  S
)  ->  ( M `  (/) )  =  0 )
3736oveq1d 6285 . . . . 5  |-  ( M  e.  (measures `  S
)  ->  ( ( M `  (/) ) /𝑒  A )  =  ( 0 /𝑒  A ) )
38 xdiv0rp 27860 . . . . 5  |-  ( A  e.  RR+  ->  ( 0 /𝑒  A )  =  0 )
3937, 38sylan9eq 2515 . . . 4  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( ( M `  (/) ) /𝑒  A )  =  0 )
4035, 39eqtrd 2495 . . 3  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( (
x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) ) `  (/) )  =  0 )
41 simpll 751 . . . . . 6  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  (
y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( M  e.  (measures `  S )  /\  A  e.  RR+ )
)
42 simplr 753 . . . . . . 7  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  (
y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  y  e.  ~P S )
43 simprl 754 . . . . . . 7  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  (
y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  y  ~<_  om )
44 simprr 755 . . . . . . 7  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  (
y  ~<_  om  /\ Disj  z  e.  y  z ) )  -> Disj  z  e.  y  z )
4542, 43, 443jca 1174 . . . . . 6  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  (
y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( y  e. 
~P S  /\  y  ~<_  om  /\ Disj  z  e.  y 
z ) )
469a1i 11 . . . . . . . . 9  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  -> 
y  e.  _V )
47 simplll 757 . . . . . . . . . 10  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  z  e.  y )  ->  M  e.  (measures `  S )
)
48 simplr 753 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  z  e.  y )  ->  y  e.  ~P S )
49 simpr 459 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  z  e.  y )  ->  z  e.  y )
50 elpwg 4007 . . . . . . . . . . . . 13  |-  ( y  e.  _V  ->  (
y  e.  ~P S  <->  y 
C_  S ) )
519, 50ax-mp 5 . . . . . . . . . . . 12  |-  ( y  e.  ~P S  <->  y  C_  S )
52 ssel2 3484 . . . . . . . . . . . 12  |-  ( ( y  C_  S  /\  z  e.  y )  ->  z  e.  S )
5351, 52sylanb 470 . . . . . . . . . . 11  |-  ( ( y  e.  ~P S  /\  z  e.  y
)  ->  z  e.  S )
5448, 49, 53syl2anc 659 . . . . . . . . . 10  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  z  e.  y )  ->  z  e.  S )
55 measvxrge0 28413 . . . . . . . . . 10  |-  ( ( M  e.  (measures `  S
)  /\  z  e.  S )  ->  ( M `  z )  e.  ( 0 [,] +oo ) )
5647, 54, 55syl2anc 659 . . . . . . . . 9  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  z  e.  y )  ->  ( M `  z )  e.  ( 0 [,] +oo ) )
57 simplr 753 . . . . . . . . 9  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  ->  A  e.  RR+ )
5846, 56, 57esumdivc 28312 . . . . . . . 8  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  -> 
(Σ* z  e.  y ( M `  z ) /𝑒  A )  = Σ* z  e.  y ( ( M `  z ) /𝑒  A ) )
59583ad2antr1 1159 . . . . . . 7  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  (Σ* z  e.  y ( M `  z ) /𝑒  A )  = Σ* z  e.  y ( ( M `  z ) /𝑒  A ) )
6026ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  S  e.  U. ran sigAlgebra )
61 simpr1 1000 . . . . . . . . . 10  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  y  e.  ~P S )
62 simpr2 1001 . . . . . . . . . 10  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  y  ~<_  om )
63 sigaclcu 28347 . . . . . . . . . 10  |-  ( ( S  e.  U. ran sigAlgebra  /\  y  e.  ~P S  /\  y  ~<_  om )  ->  U. y  e.  S
)
6460, 61, 62, 63syl3anc 1226 . . . . . . . . 9  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  U. y  e.  S
)
65 fveq2 5848 . . . . . . . . . . 11  |-  ( x  =  U. y  -> 
( M `  x
)  =  ( M `
 U. y ) )
6665oveq1d 6285 . . . . . . . . . 10  |-  ( x  =  U. y  -> 
( ( M `  x ) /𝑒  A )  =  ( ( M `  U. y ) /𝑒  A ) )
6766, 10, 2fvmpt3i 5935 . . . . . . . . 9  |-  ( U. y  e.  S  ->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  =  ( ( M `  U. y ) /𝑒  A ) )
6864, 67syl 16 . . . . . . . 8  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  =  ( ( M `  U. y ) /𝑒  A ) )
69 simpll 751 . . . . . . . . . . 11  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  M  e.  (measures `  S ) )
7069, 61jca 530 . . . . . . . . . 10  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( M  e.  (measures `  S )  /\  y  e.  ~P S ) )
71 simpr3 1002 . . . . . . . . . . 11  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  -> Disj  z  e.  y  z )
7262, 71jca 530 . . . . . . . . . 10  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( y  ~<_  om 
/\ Disj  z  e.  y  z ) )
73 measvun 28417 . . . . . . . . . . . . 13  |-  ( ( M  e.  (measures `  S
)  /\  y  e.  ~P S  /\  (
y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( M `  U. y )  = Σ* z  e.  y ( M `  z ) )
74733expia 1196 . . . . . . . . . . . 12  |-  ( ( M  e.  (measures `  S
)  /\  y  e.  ~P S )  ->  (
( y  ~<_  om  /\ Disj  z  e.  y  z )  ->  ( M `  U. y )  = Σ* z  e.  y ( M `  z ) ) )
7574ralrimiva 2868 . . . . . . . . . . 11  |-  ( M  e.  (measures `  S
)  ->  A. y  e.  ~P  S ( ( y  ~<_  om  /\ Disj  z  e.  y  z )  -> 
( M `  U. y )  = Σ* z  e.  y ( M `  z ) ) )
7675r19.21bi 2823 . . . . . . . . . 10  |-  ( ( M  e.  (measures `  S
)  /\  y  e.  ~P S )  ->  (
( y  ~<_  om  /\ Disj  z  e.  y  z )  ->  ( M `  U. y )  = Σ* z  e.  y ( M `  z ) ) )
7770, 72, 76sylc 60 . . . . . . . . 9  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( M `  U. y )  = Σ* z  e.  y ( M `  z ) )
7877oveq1d 6285 . . . . . . . 8  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( ( M `
 U. y ) /𝑒  A )  =  (Σ* z  e.  y ( M `  z ) /𝑒  A ) )
7968, 78eqtrd 2495 . . . . . . 7  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  =  (Σ* z  e.  y ( M `
 z ) /𝑒  A ) )
80 fveq2 5848 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( M `  x )  =  ( M `  z ) )
8180oveq1d 6285 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( M `  x
) /𝑒 
A )  =  ( ( M `  z
) /𝑒 
A ) )
8281, 10, 2fvmpt3i 5935 . . . . . . . . . 10  |-  ( z  e.  S  ->  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z )  =  ( ( M `  z
) /𝑒 
A ) )
8353, 82syl 16 . . . . . . . . 9  |-  ( ( y  e.  ~P S  /\  z  e.  y
)  ->  ( (
x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) ) `  z )  =  ( ( M `  z
) /𝑒 
A ) )
8483esumeq2dv 28267 . . . . . . . 8  |-  ( y  e.  ~P S  -> Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
)  = Σ* z  e.  y ( ( M `  z ) /𝑒  A ) )
8561, 84syl 16 . . . . . . 7  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  -> Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z )  = Σ* z  e.  y ( ( M `
 z ) /𝑒  A ) )
8659, 79, 853eqtr4d 2505 . . . . . 6  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
) )
8741, 45, 86syl2anc 659 . . . . 5  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  (
y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
) )
8887ex 432 . . . 4  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  -> 
( ( y  ~<_  om 
/\ Disj  z  e.  y  z )  ->  ( (
x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) ) `  U. y )  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
) ) )
8988ralrimiva 2868 . . 3  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  A. y  e.  ~P  S ( ( y  ~<_  om  /\ Disj  z  e.  y  z )  -> 
( ( x  e.  S  |->  ( ( M `
 x ) /𝑒  A ) ) `  U. y
)  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `
 x ) /𝑒  A ) ) `  z ) ) )
9025, 40, 893jca 1174 . 2  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( (
x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) ) : S --> ( 0 [,] +oo )  /\  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  (/) )  =  0  /\ 
A. y  e.  ~P  S ( ( y  ~<_  om  /\ Disj  z  e.  y  z )  ->  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
) ) ) )
91 ismeas 28407 . . . . 5  |-  ( S  e.  U. ran sigAlgebra  ->  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  e.  (measures `  S )  <->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) : S --> ( 0 [,] +oo )  /\  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  (/) )  =  0  /\ 
A. y  e.  ~P  S ( ( y  ~<_  om  /\ Disj  z  e.  y  z )  ->  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
) ) ) ) )
9226, 91syl 16 . . . 4  |-  ( M  e.  (measures `  S
)  ->  ( (
x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) )  e.  (measures `  S )  <->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) : S --> ( 0 [,] +oo )  /\  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  (/) )  =  0  /\ 
A. y  e.  ~P  S ( ( y  ~<_  om  /\ Disj  z  e.  y  z )  ->  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
) ) ) ) )
9392biimprd 223 . . 3  |-  ( M  e.  (measures `  S
)  ->  ( (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) : S --> ( 0 [,] +oo )  /\  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  (/) )  =  0  /\ 
A. y  e.  ~P  S ( ( y  ~<_  om  /\ Disj  z  e.  y  z )  ->  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
) ) )  -> 
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  e.  (measures `  S )
) )
9493adantr 463 . 2  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) : S --> ( 0 [,] +oo )  /\  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  (/) )  =  0  /\ 
A. y  e.  ~P  S ( ( y  ~<_  om  /\ Disj  z  e.  y  z )  ->  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
) ) )  -> 
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  e.  (measures `  S )
) )
9590, 94mpd 15 1  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  e.  (measures `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805   _Vcvv 3106    C_ wss 3461   (/)c0 3783   ~Pcpw 3999   U.cuni 4235  Disj wdisj 4410   class class class wbr 4439    |-> cmpt 4497   dom cdm 4988   ran crn 4989   Fun wfun 5564    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270   omcom 6673    ~<_ cdom 7507   0cc0 9481   +oocpnf 9614   RR+crp 11221   [,]cicc 11535   /𝑒 cxdiv 27847  Σ*cesum 28256  sigAlgebracsiga 28337  measurescmeas 28403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-disj 4411  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ioc 11537  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-seq 12090  df-hash 12388  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-tset 14803  df-ple 14804  df-ds 14806  df-rest 14912  df-topn 14913  df-0g 14931  df-gsum 14932  df-topgen 14933  df-ordt 14990  df-xrs 14991  df-mre 15075  df-mrc 15076  df-acs 15078  df-ps 16029  df-tsr 16030  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-mhm 16165  df-submnd 16166  df-cntz 16554  df-cmn 16999  df-fbas 18611  df-fg 18612  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-ntr 19688  df-nei 19766  df-cn 19895  df-cnp 19896  df-haus 19983  df-fil 20513  df-fm 20605  df-flim 20606  df-flf 20607  df-tsms 20791  df-xdiv 27848  df-esum 28257  df-siga 28338  df-meas 28404
This theorem is referenced by:  probfinmeasbOLD  28631  probmeasb  28633
  Copyright terms: Public domain W3C validator