Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measdivcst Structured version   Unicode version

Theorem measdivcst 28352
Description: Division of a measure by a positive constant is a measure. (Contributed by Thierry Arnoux, 25-Dec-2016.) (Revised by Thierry Arnoux, 30-Jan-2017.)
Assertion
Ref Expression
measdivcst  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( M𝑓/𝑐 /𝑒  A )  e.  (measures `  S ) )

Proof of Theorem measdivcst
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofcfval3 28250 . . 3  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( M𝑓/𝑐 /𝑒  A )  =  ( x  e.  dom  M  |->  ( ( M `  x ) /𝑒  A ) ) )
2 measfrge0 28330 . . . . . 6  |-  ( M  e.  (measures `  S
)  ->  M : S
--> ( 0 [,] +oo ) )
3 fdm 5643 . . . . . 6  |-  ( M : S --> ( 0 [,] +oo )  ->  dom  M  =  S )
42, 3syl 16 . . . . 5  |-  ( M  e.  (measures `  S
)  ->  dom  M  =  S )
54adantr 463 . . . 4  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  dom  M  =  S )
65mpteq1d 4448 . . 3  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( x  e.  dom  M  |->  ( ( M `  x ) /𝑒  A ) )  =  ( x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) ) )
71, 6eqtrd 2423 . 2  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( M𝑓/𝑐 /𝑒  A )  =  ( x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) ) )
8 measvxrge0 28332 . . . . . 6  |-  ( ( M  e.  (measures `  S
)  /\  x  e.  S )  ->  ( M `  x )  e.  ( 0 [,] +oo ) )
98adantlr 712 . . . . 5  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  x  e.  S )  ->  ( M `  x )  e.  ( 0 [,] +oo ) )
10 simplr 753 . . . . 5  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  x  e.  S )  ->  A  e.  RR+ )
119, 10xrpxdivcld 27784 . . . 4  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  x  e.  S )  ->  (
( M `  x
) /𝑒 
A )  e.  ( 0 [,] +oo )
)
12 eqid 2382 . . . 4  |-  ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  =  ( x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) )
1311, 12fmptd 5957 . . 3  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) : S --> ( 0 [,] +oo ) )
14 measbase 28324 . . . . . . 7  |-  ( M  e.  (measures `  S
)  ->  S  e.  U.
ran sigAlgebra )
15 0elsiga 28263 . . . . . . 7  |-  ( S  e.  U. ran sigAlgebra  ->  (/)  e.  S
)
1614, 15syl 16 . . . . . 6  |-  ( M  e.  (measures `  S
)  ->  (/)  e.  S
)
1716adantr 463 . . . . 5  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  (/)  e.  S
)
18 ovex 6224 . . . . 5  |-  ( ( M `  (/) ) /𝑒  A )  e.  _V
19 fveq2 5774 . . . . . . 7  |-  ( x  =  (/)  ->  ( M `
 x )  =  ( M `  (/) ) )
2019oveq1d 6211 . . . . . 6  |-  ( x  =  (/)  ->  ( ( M `  x ) /𝑒  A )  =  ( ( M `  (/) ) /𝑒  A ) )
2120, 12fvmptg 5855 . . . . 5  |-  ( (
(/)  e.  S  /\  ( ( M `  (/) ) /𝑒  A )  e.  _V )  ->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  (/) )  =  ( ( M `  (/) ) /𝑒  A ) )
2217, 18, 21sylancl 660 . . . 4  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( (
x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) ) `  (/) )  =  ( ( M `  (/) ) /𝑒  A ) )
23 measvnul 28333 . . . . . 6  |-  ( M  e.  (measures `  S
)  ->  ( M `  (/) )  =  0 )
2423oveq1d 6211 . . . . 5  |-  ( M  e.  (measures `  S
)  ->  ( ( M `  (/) ) /𝑒  A )  =  ( 0 /𝑒  A ) )
25 xdiv0rp 27779 . . . . 5  |-  ( A  e.  RR+  ->  ( 0 /𝑒  A )  =  0 )
2624, 25sylan9eq 2443 . . . 4  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( ( M `  (/) ) /𝑒  A )  =  0 )
2722, 26eqtrd 2423 . . 3  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( (
x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) ) `  (/) )  =  0 )
28 simpll 751 . . . . . 6  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  (
y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( M  e.  (measures `  S )  /\  A  e.  RR+ )
)
29 simplr 753 . . . . . 6  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  (
y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  y  e.  ~P S )
30 simprl 754 . . . . . 6  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  (
y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  y  ~<_  om )
31 simprr 755 . . . . . 6  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  (
y  ~<_  om  /\ Disj  z  e.  y  z ) )  -> Disj  z  e.  y  z )
32 vex 3037 . . . . . . . . . 10  |-  y  e. 
_V
3332a1i 11 . . . . . . . . 9  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  -> 
y  e.  _V )
34 simplll 757 . . . . . . . . . 10  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  z  e.  y )  ->  M  e.  (measures `  S )
)
35 selpw 3934 . . . . . . . . . . . 12  |-  ( y  e.  ~P S  <->  y  C_  S )
36 ssel2 3412 . . . . . . . . . . . 12  |-  ( ( y  C_  S  /\  z  e.  y )  ->  z  e.  S )
3735, 36sylanb 470 . . . . . . . . . . 11  |-  ( ( y  e.  ~P S  /\  z  e.  y
)  ->  z  e.  S )
3837adantll 711 . . . . . . . . . 10  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  z  e.  y )  ->  z  e.  S )
39 measvxrge0 28332 . . . . . . . . . 10  |-  ( ( M  e.  (measures `  S
)  /\  z  e.  S )  ->  ( M `  z )  e.  ( 0 [,] +oo ) )
4034, 38, 39syl2anc 659 . . . . . . . . 9  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  z  e.  y )  ->  ( M `  z )  e.  ( 0 [,] +oo ) )
41 simplr 753 . . . . . . . . 9  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  ->  A  e.  RR+ )
4233, 40, 41esumdivc 28231 . . . . . . . 8  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  -> 
(Σ* z  e.  y ( M `  z ) /𝑒  A )  = Σ* z  e.  y ( ( M `  z ) /𝑒  A ) )
43423ad2antr1 1159 . . . . . . 7  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  (Σ* z  e.  y ( M `  z ) /𝑒  A )  = Σ* z  e.  y ( ( M `  z ) /𝑒  A ) )
4414ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  S  e.  U. ran sigAlgebra )
45 simpr1 1000 . . . . . . . . . 10  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  y  e.  ~P S )
46 simpr2 1001 . . . . . . . . . 10  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  y  ~<_  om )
47 sigaclcu 28266 . . . . . . . . . 10  |-  ( ( S  e.  U. ran sigAlgebra  /\  y  e.  ~P S  /\  y  ~<_  om )  ->  U. y  e.  S
)
4844, 45, 46, 47syl3anc 1226 . . . . . . . . 9  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  U. y  e.  S
)
49 fveq2 5774 . . . . . . . . . . 11  |-  ( x  =  U. y  -> 
( M `  x
)  =  ( M `
 U. y ) )
5049oveq1d 6211 . . . . . . . . . 10  |-  ( x  =  U. y  -> 
( ( M `  x ) /𝑒  A )  =  ( ( M `  U. y ) /𝑒  A ) )
51 ovex 6224 . . . . . . . . . 10  |-  ( ( M `  x ) /𝑒  A )  e.  _V
5250, 12, 51fvmpt3i 5861 . . . . . . . . 9  |-  ( U. y  e.  S  ->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  =  ( ( M `  U. y ) /𝑒  A ) )
5348, 52syl 16 . . . . . . . 8  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  =  ( ( M `  U. y ) /𝑒  A ) )
54 simpll 751 . . . . . . . . . 10  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  M  e.  (measures `  S ) )
55 simpr3 1002 . . . . . . . . . 10  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  -> Disj  z  e.  y  z )
56 measvun 28336 . . . . . . . . . 10  |-  ( ( M  e.  (measures `  S
)  /\  y  e.  ~P S  /\  (
y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( M `  U. y )  = Σ* z  e.  y ( M `  z ) )
5754, 45, 46, 55, 56syl112anc 1230 . . . . . . . . 9  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( M `  U. y )  = Σ* z  e.  y ( M `  z ) )
5857oveq1d 6211 . . . . . . . 8  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( ( M `
 U. y ) /𝑒  A )  =  (Σ* z  e.  y ( M `  z ) /𝑒  A ) )
5953, 58eqtrd 2423 . . . . . . 7  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  =  (Σ* z  e.  y ( M `
 z ) /𝑒  A ) )
60 fveq2 5774 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( M `  x )  =  ( M `  z ) )
6160oveq1d 6211 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( M `  x
) /𝑒 
A )  =  ( ( M `  z
) /𝑒 
A ) )
6261, 12, 51fvmpt3i 5861 . . . . . . . . . 10  |-  ( z  e.  S  ->  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z )  =  ( ( M `  z
) /𝑒 
A ) )
6337, 62syl 16 . . . . . . . . 9  |-  ( ( y  e.  ~P S  /\  z  e.  y
)  ->  ( (
x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) ) `  z )  =  ( ( M `  z
) /𝑒 
A ) )
6463esumeq2dv 28186 . . . . . . . 8  |-  ( y  e.  ~P S  -> Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
)  = Σ* z  e.  y ( ( M `  z ) /𝑒  A ) )
6545, 64syl 16 . . . . . . 7  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  -> Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z )  = Σ* z  e.  y ( ( M `
 z ) /𝑒  A ) )
6643, 59, 653eqtr4d 2433 . . . . . 6  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  (
y  e.  ~P S  /\  y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
) )
6728, 29, 30, 31, 66syl13anc 1228 . . . . 5  |-  ( ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  /\  (
y  ~<_  om  /\ Disj  z  e.  y  z ) )  ->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
) )
6867ex 432 . . . 4  |-  ( ( ( M  e.  (measures `  S )  /\  A  e.  RR+ )  /\  y  e.  ~P S )  -> 
( ( y  ~<_  om 
/\ Disj  z  e.  y  z )  ->  ( (
x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) ) `  U. y )  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
) ) )
6968ralrimiva 2796 . . 3  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  A. y  e.  ~P  S ( ( y  ~<_  om  /\ Disj  z  e.  y  z )  -> 
( ( x  e.  S  |->  ( ( M `
 x ) /𝑒  A ) ) `  U. y
)  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `
 x ) /𝑒  A ) ) `  z ) ) )
70 ismeas 28326 . . . . . 6  |-  ( S  e.  U. ran sigAlgebra  ->  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  e.  (measures `  S )  <->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) : S --> ( 0 [,] +oo )  /\  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  (/) )  =  0  /\ 
A. y  e.  ~P  S ( ( y  ~<_  om  /\ Disj  z  e.  y  z )  ->  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
) ) ) ) )
7114, 70syl 16 . . . . 5  |-  ( M  e.  (measures `  S
)  ->  ( (
x  e.  S  |->  ( ( M `  x
) /𝑒 
A ) )  e.  (measures `  S )  <->  ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) : S --> ( 0 [,] +oo )  /\  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  (/) )  =  0  /\ 
A. y  e.  ~P  S ( ( y  ~<_  om  /\ Disj  z  e.  y  z )  ->  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
) ) ) ) )
7271biimprd 223 . . . 4  |-  ( M  e.  (measures `  S
)  ->  ( (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) : S --> ( 0 [,] +oo )  /\  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  (/) )  =  0  /\ 
A. y  e.  ~P  S ( ( y  ~<_  om  /\ Disj  z  e.  y  z )  ->  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
) ) )  -> 
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  e.  (measures `  S )
) )
7372adantr 463 . . 3  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) : S --> ( 0 [,] +oo )  /\  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  (/) )  =  0  /\ 
A. y  e.  ~P  S ( ( y  ~<_  om  /\ Disj  z  e.  y  z )  ->  (
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  U. y )  = Σ* z  e.  y ( ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) ) `  z
) ) )  -> 
( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  e.  (measures `  S )
) )
7413, 27, 69, 73mp3and 1325 . 2  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( x  e.  S  |->  ( ( M `  x ) /𝑒  A ) )  e.  (measures `  S ) )
757, 74eqeltrd 2470 1  |-  ( ( M  e.  (measures `  S
)  /\  A  e.  RR+ )  ->  ( M𝑓/𝑐 /𝑒  A )  e.  (measures `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826   A.wral 2732   _Vcvv 3034    C_ wss 3389   (/)c0 3711   ~Pcpw 3927   U.cuni 4163  Disj wdisj 4338   class class class wbr 4367    |-> cmpt 4425   dom cdm 4913   ran crn 4914   -->wf 5492   ` cfv 5496  (class class class)co 6196   omcom 6599    ~<_ cdom 7433   0cc0 9403   +oocpnf 9536   RR+crp 11139   [,]cicc 11453   /𝑒 cxdiv 27766  Σ*cesum 28175  ∘𝑓/𝑐cofc 28243  sigAlgebracsiga 28256  measurescmeas 28322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-disj 4339  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-of 6439  df-om 6600  df-1st 6699  df-2nd 6700  df-supp 6818  df-recs 6960  df-rdg 6994  df-1o 7048  df-oadd 7052  df-er 7229  df-map 7340  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-fsupp 7745  df-fi 7786  df-sup 7816  df-oi 7850  df-card 8233  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-uz 11002  df-q 11102  df-rp 11140  df-xneg 11239  df-xadd 11240  df-xmul 11241  df-ioo 11454  df-ioc 11455  df-ico 11456  df-icc 11457  df-fz 11594  df-fzo 11718  df-seq 12011  df-hash 12308  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-mulr 14716  df-tset 14721  df-ple 14722  df-ds 14724  df-rest 14830  df-topn 14831  df-0g 14849  df-gsum 14850  df-topgen 14851  df-ordt 14908  df-xrs 14909  df-mre 14993  df-mrc 14994  df-acs 14996  df-ps 15947  df-tsr 15948  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-mhm 16083  df-submnd 16084  df-cntz 16472  df-cmn 16917  df-fbas 18529  df-fg 18530  df-top 19484  df-bases 19486  df-topon 19487  df-topsp 19488  df-ntr 19606  df-nei 19685  df-cn 19814  df-cnp 19815  df-haus 19902  df-fil 20432  df-fm 20524  df-flim 20525  df-flf 20526  df-tsms 20710  df-xdiv 27767  df-esum 28176  df-ofc 28244  df-siga 28257  df-meas 28323
This theorem is referenced by:  probfinmeasb  28551
  Copyright terms: Public domain W3C validator