HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsymlem5 Structured version   Unicode version

Theorem mdsymlem5 28052
Description: Lemma for mdsymi 28056. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsymlem1.1  |-  A  e. 
CH
mdsymlem1.2  |-  B  e. 
CH
mdsymlem1.3  |-  C  =  ( A  vH  p
)
Assertion
Ref Expression
mdsymlem5  |-  ( ( q  e. HAtoms  /\  r  e. HAtoms )  ->  ( -.  q  =  p  ->  ( ( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) )  ->  ( (
( c  e.  CH  /\  A  C_  c )  /\  p  e. HAtoms )  -> 
( p  C_  c  ->  p  C_  ( (
c  i^i  B )  vH  A ) ) ) ) ) )
Distinct variable groups:    r, q, C    p, c, q, r, A    B, c, p, q, r
Allowed substitution hints:    C( p, c)

Proof of Theorem mdsymlem5
StepHypRef Expression
1 df-ne 2621 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( q  =/=  p  <->  -.  q  =  p )
2 atnemeq0 28022 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( q  e. HAtoms  /\  p  e. HAtoms )  ->  ( q  =/=  p  <->  ( q  i^i  p )  =  0H ) )
31, 2syl5bbr 263 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( q  e. HAtoms  /\  p  e. HAtoms )  ->  ( -.  q  =  p  <->  ( q  i^i  p )  =  0H ) )
43anbi2d 709 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( q  e. HAtoms  /\  p  e. HAtoms )  ->  ( (
p  C_  ( q  vH  r )  /\  -.  q  =  p )  <->  ( p  C_  ( q  vH  r )  /\  (
q  i^i  p )  =  0H ) ) )
543adant3 1026 . . . . . . . . . . . . . . . . . . 19  |-  ( ( q  e. HAtoms  /\  p  e. HAtoms  /\  r  e. HAtoms )  ->  ( ( p  C_  ( q  vH  r
)  /\  -.  q  =  p )  <->  ( p  C_  ( q  vH  r
)  /\  ( q  i^i  p )  =  0H ) ) )
6 atelch 27989 . . . . . . . . . . . . . . . . . . . 20  |-  ( q  e. HAtoms  ->  q  e.  CH )
7 atexch 28026 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( q  e.  CH  /\  p  e. HAtoms  /\  r  e. HAtoms
)  ->  ( (
p  C_  ( q  vH  r )  /\  (
q  i^i  p )  =  0H )  ->  r  C_  ( q  vH  p
) ) )
86, 7syl3an1 1298 . . . . . . . . . . . . . . . . . . 19  |-  ( ( q  e. HAtoms  /\  p  e. HAtoms  /\  r  e. HAtoms )  ->  ( ( p  C_  ( q  vH  r
)  /\  ( q  i^i  p )  =  0H )  ->  r  C_  ( q  vH  p
) ) )
95, 8sylbid 219 . . . . . . . . . . . . . . . . . 18  |-  ( ( q  e. HAtoms  /\  p  e. HAtoms  /\  r  e. HAtoms )  ->  ( ( p  C_  ( q  vH  r
)  /\  -.  q  =  p )  ->  r  C_  ( q  vH  p
) ) )
109expd 438 . . . . . . . . . . . . . . . . 17  |-  ( ( q  e. HAtoms  /\  p  e. HAtoms  /\  r  e. HAtoms )  ->  ( p  C_  (
q  vH  r )  ->  ( -.  q  =  p  ->  r  C_  ( q  vH  p
) ) ) )
11103com23 1212 . . . . . . . . . . . . . . . 16  |-  ( ( q  e. HAtoms  /\  r  e. HAtoms  /\  p  e. HAtoms )  ->  ( p  C_  (
q  vH  r )  ->  ( -.  q  =  p  ->  r  C_  ( q  vH  p
) ) ) )
12113expa 1206 . . . . . . . . . . . . . . 15  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  p  e. HAtoms
)  ->  ( p  C_  ( q  vH  r
)  ->  ( -.  q  =  p  ->  r 
C_  ( q  vH  p ) ) ) )
1312adantrl 721 . . . . . . . . . . . . . 14  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  ->  (
p  C_  ( q  vH  r )  ->  ( -.  q  =  p  ->  r  C_  ( q  vH  p ) ) ) )
1413adantrd 470 . . . . . . . . . . . . 13  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  ->  (
( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) )  ->  ( -.  q  =  p  ->  r 
C_  ( q  vH  p ) ) ) )
1514imp32 435 . . . . . . . . . . . 12  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p
) )  ->  r  C_  ( q  vH  p
) )
1615adantrl 721 . . . . . . . . . . 11  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( A  C_  c  /\  ( ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p
) ) )  -> 
r  C_  ( q  vH  p ) )
1716adantrr 722 . . . . . . . . . 10  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( A  C_  c  /\  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p ) )  /\  p  C_  c ) )  ->  r  C_  (
q  vH  p )
)
18 simplrl 769 . . . . . . . . . . . 12  |-  ( ( ( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p )  ->  q  C_  A )
19 atelch 27989 . . . . . . . . . . . . . . . 16  |-  ( p  e. HAtoms  ->  p  e.  CH )
2019anim1i 571 . . . . . . . . . . . . . . 15  |-  ( ( p  e. HAtoms  /\  c  e.  CH )  ->  (
p  e.  CH  /\  c  e.  CH )
)
2120ancoms 455 . . . . . . . . . . . . . 14  |-  ( ( c  e.  CH  /\  p  e. HAtoms )  ->  ( p  e.  CH  /\  c  e.  CH )
)
22 mdsymlem1.1 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  A  e. 
CH
23 chub2 27153 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CH  /\  c  e.  CH )  ->  A  C_  ( c  vH  A ) )
2422, 23mpan 675 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( c  e.  CH  ->  A  C_  ( c  vH  A
) )
25 sstr 3473 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( q  C_  A  /\  A  C_  ( c  vH  A ) )  -> 
q  C_  ( c  vH  A ) )
2624, 25sylan2 477 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( q  C_  A  /\  c  e.  CH )  ->  q  C_  ( c  vH  A ) )
27 chub1 27152 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( c  e.  CH  /\  A  e.  CH )  ->  c  C_  ( c  vH  A ) )
2822, 27mpan2 676 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( c  e.  CH  ->  c  C_  ( c  vH  A
) )
29 sstr 3473 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( p  C_  c  /\  c  C_  ( c  vH  A ) )  ->  p  C_  ( c  vH  A ) )
3028, 29sylan2 477 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( p  C_  c  /\  c  e.  CH )  ->  p  C_  ( c  vH  A ) )
3126, 30anim12i 569 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( q  C_  A  /\  c  e.  CH )  /\  ( p  C_  c  /\  c  e.  CH )
)  ->  ( q  C_  ( c  vH  A
)  /\  p  C_  (
c  vH  A )
) )
3231anandirs 839 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( q  C_  A  /\  p  C_  c )  /\  c  e.  CH )  ->  ( q  C_  ( c  vH  A
)  /\  p  C_  (
c  vH  A )
) )
3332ancoms 455 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( c  e.  CH  /\  ( q  C_  A  /\  p  C_  c ) )  ->  ( q  C_  ( c  vH  A
)  /\  p  C_  (
c  vH  A )
) )
3433adantll 719 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( q  e. 
CH  /\  p  e.  CH )  /\  c  e. 
CH )  /\  (
q  C_  A  /\  p  C_  c ) )  ->  ( q  C_  ( c  vH  A
)  /\  p  C_  (
c  vH  A )
) )
35 chjcl 27002 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( c  e.  CH  /\  A  e.  CH )  ->  ( c  vH  A
)  e.  CH )
3622, 35mpan2 676 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( c  e.  CH  ->  (
c  vH  A )  e.  CH )
37 chlub 27154 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( q  e.  CH  /\  p  e.  CH  /\  (
c  vH  A )  e.  CH )  ->  (
( q  C_  (
c  vH  A )  /\  p  C_  ( c  vH  A ) )  <-> 
( q  vH  p
)  C_  ( c  vH  A ) ) )
3836, 37syl3an3 1300 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( q  e.  CH  /\  p  e.  CH  /\  c  e.  CH )  ->  (
( q  C_  (
c  vH  A )  /\  p  C_  ( c  vH  A ) )  <-> 
( q  vH  p
)  C_  ( c  vH  A ) ) )
39383expa 1206 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( q  e.  CH  /\  p  e.  CH )  /\  c  e.  CH )  ->  ( ( q  C_  ( c  vH  A
)  /\  p  C_  (
c  vH  A )
)  <->  ( q  vH  p )  C_  (
c  vH  A )
) )
4039adantr 467 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( q  e. 
CH  /\  p  e.  CH )  /\  c  e. 
CH )  /\  (
q  C_  A  /\  p  C_  c ) )  ->  ( ( q 
C_  ( c  vH  A )  /\  p  C_  ( c  vH  A
) )  <->  ( q  vH  p )  C_  (
c  vH  A )
) )
4134, 40mpbid 214 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( q  e. 
CH  /\  p  e.  CH )  /\  c  e. 
CH )  /\  (
q  C_  A  /\  p  C_  c ) )  ->  ( q  vH  p )  C_  (
c  vH  A )
)
4241adantrl 721 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( q  e. 
CH  /\  p  e.  CH )  /\  c  e. 
CH )  /\  ( A  C_  c  /\  (
q  C_  A  /\  p  C_  c ) ) )  ->  ( q  vH  p )  C_  (
c  vH  A )
)
43 chlejb2 27158 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CH  /\  c  e.  CH )  ->  ( A  C_  c  <->  ( c  vH  A )  =  c ) )
4422, 43mpan 675 . . . . . . . . . . . . . . . . . . 19  |-  ( c  e.  CH  ->  ( A  C_  c  <->  ( c  vH  A )  =  c ) )
4544biimpa 487 . . . . . . . . . . . . . . . . . 18  |-  ( ( c  e.  CH  /\  A  C_  c )  -> 
( c  vH  A
)  =  c )
4645ad2ant2lr 753 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( q  e. 
CH  /\  p  e.  CH )  /\  c  e. 
CH )  /\  ( A  C_  c  /\  (
q  C_  A  /\  p  C_  c ) ) )  ->  ( c  vH  A )  =  c )
4742, 46sseqtrd 3501 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( q  e. 
CH  /\  p  e.  CH )  /\  c  e. 
CH )  /\  ( A  C_  c  /\  (
q  C_  A  /\  p  C_  c ) ) )  ->  ( q  vH  p )  C_  c
)
4847exp45 618 . . . . . . . . . . . . . . 15  |-  ( ( ( q  e.  CH  /\  p  e.  CH )  /\  c  e.  CH )  ->  ( A  C_  c  ->  ( q  C_  A  ->  ( p  C_  c  ->  ( q  vH  p
)  C_  c )
) ) )
4948anasss 652 . . . . . . . . . . . . . 14  |-  ( ( q  e.  CH  /\  ( p  e.  CH  /\  c  e.  CH )
)  ->  ( A  C_  c  ->  ( q  C_  A  ->  ( p  C_  c  ->  ( q  vH  p )  C_  c
) ) ) )
506, 21, 49syl2an 480 . . . . . . . . . . . . 13  |-  ( ( q  e. HAtoms  /\  (
c  e.  CH  /\  p  e. HAtoms ) )  ->  ( A  C_  c  ->  ( q  C_  A  ->  ( p  C_  c  ->  ( q  vH  p
)  C_  c )
) ) )
5150adantlr 720 . . . . . . . . . . . 12  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  ->  ( A  C_  c  ->  (
q  C_  A  ->  ( p  C_  c  ->  ( q  vH  p ) 
C_  c ) ) ) )
5218, 51syl7 71 . . . . . . . . . . 11  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  ->  ( A  C_  c  ->  (
( ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p
)  ->  ( p  C_  c  ->  ( q  vH  p )  C_  c
) ) ) )
5352imp44 600 . . . . . . . . . 10  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( A  C_  c  /\  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p ) )  /\  p  C_  c ) )  ->  ( q  vH  p )  C_  c
)
5417, 53sstrd 3475 . . . . . . . . 9  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( A  C_  c  /\  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p ) )  /\  p  C_  c ) )  ->  r  C_  c
)
55 simplrr 770 . . . . . . . . . . 11  |-  ( ( ( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p )  ->  r  C_  B )
5655ad2antlr 732 . . . . . . . . . 10  |-  ( ( ( A  C_  c  /\  ( ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p
) )  /\  p  C_  c )  ->  r  C_  B )
5756adantl 468 . . . . . . . . 9  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( A  C_  c  /\  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p ) )  /\  p  C_  c ) )  ->  r  C_  B
)
5854, 57ssind 3687 . . . . . . . 8  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( A  C_  c  /\  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p ) )  /\  p  C_  c ) )  ->  r  C_  (
c  i^i  B )
)
59 atelch 27989 . . . . . . . . . . . . . . . . 17  |-  ( r  e. HAtoms  ->  r  e.  CH )
606, 59anim12i 569 . . . . . . . . . . . . . . . 16  |-  ( ( q  e. HAtoms  /\  r  e. HAtoms )  ->  ( q  e.  CH  /\  r  e. 
CH ) )
61 mdsymlem1.2 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  B  e. 
CH
62 chincl 27144 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( c  e.  CH  /\  B  e.  CH )  ->  ( c  i^i  B
)  e.  CH )
6361, 62mpan2 676 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( c  e.  CH  ->  (
c  i^i  B )  e.  CH )
64 chlej1 27155 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( r  e.  CH  /\  ( c  i^i  B
)  e.  CH  /\  q  e.  CH )  /\  r  C_  ( c  i^i  B ) )  ->  ( r  vH  q )  C_  (
( c  i^i  B
)  vH  q )
)
6564ex 436 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( r  e.  CH  /\  ( c  i^i  B
)  e.  CH  /\  q  e.  CH )  ->  ( r  C_  (
c  i^i  B )  ->  ( r  vH  q
)  C_  ( (
c  i^i  B )  vH  q ) ) )
6663, 65syl3an2 1299 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( r  e.  CH  /\  c  e.  CH  /\  q  e.  CH )  ->  (
r  C_  ( c  i^i  B )  ->  (
r  vH  q )  C_  ( ( c  i^i 
B )  vH  q
) ) )
67663comr 1214 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( q  e.  CH  /\  r  e.  CH  /\  c  e.  CH )  ->  (
r  C_  ( c  i^i  B )  ->  (
r  vH  q )  C_  ( ( c  i^i 
B )  vH  q
) ) )
68673expa 1206 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( q  e.  CH  /\  r  e.  CH )  /\  c  e.  CH )  ->  ( r  C_  (
c  i^i  B )  ->  ( r  vH  q
)  C_  ( (
c  i^i  B )  vH  q ) ) )
6968adantr 467 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  q  C_  A )  ->  (
r  C_  ( c  i^i  B )  ->  (
r  vH  q )  C_  ( ( c  i^i 
B )  vH  q
) ) )
70 chlej2 27156 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( q  e.  CH  /\  A  e.  CH  /\  ( c  i^i  B
)  e.  CH )  /\  q  C_  A )  ->  ( ( c  i^i  B )  vH  q )  C_  (
( c  i^i  B
)  vH  A )
)
7122, 70mp3anl2 1356 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( q  e.  CH  /\  ( c  i^i  B
)  e.  CH )  /\  q  C_  A )  ->  ( ( c  i^i  B )  vH  q )  C_  (
( c  i^i  B
)  vH  A )
)
7263, 71sylanl2 656 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( q  e.  CH  /\  c  e.  CH )  /\  q  C_  A )  ->  ( ( c  i^i  B )  vH  q )  C_  (
( c  i^i  B
)  vH  A )
)
7372adantllr 724 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  q  C_  A )  ->  (
( c  i^i  B
)  vH  q )  C_  ( ( c  i^i 
B )  vH  A
) )
74 sstr2 3472 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( r  vH  q ) 
C_  ( ( c  i^i  B )  vH  q )  ->  (
( ( c  i^i 
B )  vH  q
)  C_  ( (
c  i^i  B )  vH  A )  ->  (
r  vH  q )  C_  ( ( c  i^i 
B )  vH  A
) ) )
7573, 74syl5com 32 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  q  C_  A )  ->  (
( r  vH  q
)  C_  ( (
c  i^i  B )  vH  q )  ->  (
r  vH  q )  C_  ( ( c  i^i 
B )  vH  A
) ) )
76 chjcom 27151 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( q  e.  CH  /\  r  e.  CH )  ->  ( q  vH  r
)  =  ( r  vH  q ) )
7776ad2antrr 731 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  q  C_  A )  ->  (
q  vH  r )  =  ( r  vH  q ) )
7877sseq1d 3492 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  q  C_  A )  ->  (
( q  vH  r
)  C_  ( (
c  i^i  B )  vH  A )  <->  ( r  vH  q )  C_  (
( c  i^i  B
)  vH  A )
) )
7975, 78sylibrd 238 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  q  C_  A )  ->  (
( r  vH  q
)  C_  ( (
c  i^i  B )  vH  q )  ->  (
q  vH  r )  C_  ( ( c  i^i 
B )  vH  A
) ) )
8069, 79syld 46 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  q  C_  A )  ->  (
r  C_  ( c  i^i  B )  ->  (
q  vH  r )  C_  ( ( c  i^i 
B )  vH  A
) ) )
8180adantrl 721 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  (
p  C_  ( q  vH  r )  /\  q  C_  A ) )  -> 
( r  C_  (
c  i^i  B )  ->  ( q  vH  r
)  C_  ( (
c  i^i  B )  vH  A ) ) )
82 sstr2 3472 . . . . . . . . . . . . . . . . . . 19  |-  ( p 
C_  ( q  vH  r )  ->  (
( q  vH  r
)  C_  ( (
c  i^i  B )  vH  A )  ->  p  C_  ( ( c  i^i 
B )  vH  A
) ) )
8382ad2antrl 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  (
p  C_  ( q  vH  r )  /\  q  C_  A ) )  -> 
( ( q  vH  r )  C_  (
( c  i^i  B
)  vH  A )  ->  p  C_  ( (
c  i^i  B )  vH  A ) ) )
8481, 83syld 46 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  (
p  C_  ( q  vH  r )  /\  q  C_  A ) )  -> 
( r  C_  (
c  i^i  B )  ->  p  C_  ( (
c  i^i  B )  vH  A ) ) )
8584exp32 609 . . . . . . . . . . . . . . . 16  |-  ( ( ( q  e.  CH  /\  r  e.  CH )  /\  c  e.  CH )  ->  ( p  C_  (
q  vH  r )  ->  ( q  C_  A  ->  ( r  C_  (
c  i^i  B )  ->  p  C_  ( (
c  i^i  B )  vH  A ) ) ) ) )
8660, 85sylan 474 . . . . . . . . . . . . . . 15  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  c  e. 
CH )  ->  (
p  C_  ( q  vH  r )  ->  (
q  C_  A  ->  ( r  C_  ( c  i^i  B )  ->  p  C_  ( ( c  i^i 
B )  vH  A
) ) ) ) )
8786adantrr 722 . . . . . . . . . . . . . 14  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  ->  (
p  C_  ( q  vH  r )  ->  (
q  C_  A  ->  ( r  C_  ( c  i^i  B )  ->  p  C_  ( ( c  i^i 
B )  vH  A
) ) ) ) )
8887imp31 434 . . . . . . . . . . . . 13  |-  ( ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  p  C_  ( q  vH  r ) )  /\  q  C_  A
)  ->  ( r  C_  ( c  i^i  B
)  ->  p  C_  (
( c  i^i  B
)  vH  A )
) )
8988adantrr 722 . . . . . . . . . . . 12  |-  ( ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  p  C_  ( q  vH  r ) )  /\  ( q  C_  A  /\  r  C_  B
) )  ->  (
r  C_  ( c  i^i  B )  ->  p  C_  ( ( c  i^i 
B )  vH  A
) ) )
9089anasss 652 . . . . . . . . . . 11  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) ) )  ->  (
r  C_  ( c  i^i  B )  ->  p  C_  ( ( c  i^i 
B )  vH  A
) ) )
9190adantrr 722 . . . . . . . . . 10  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p
) )  ->  (
r  C_  ( c  i^i  B )  ->  p  C_  ( ( c  i^i 
B )  vH  A
) ) )
9291adantrl 721 . . . . . . . . 9  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( A  C_  c  /\  ( ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p
) ) )  -> 
( r  C_  (
c  i^i  B )  ->  p  C_  ( (
c  i^i  B )  vH  A ) ) )
9392adantrr 722 . . . . . . . 8  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( A  C_  c  /\  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p ) )  /\  p  C_  c ) )  ->  ( r  C_  ( c  i^i  B
)  ->  p  C_  (
( c  i^i  B
)  vH  A )
) )
9458, 93mpd 15 . . . . . . 7  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( A  C_  c  /\  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p ) )  /\  p  C_  c ) )  ->  p  C_  (
( c  i^i  B
)  vH  A )
)
9594exp32 609 . . . . . 6  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  ->  (
( A  C_  c  /\  ( ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p
) )  ->  (
p  C_  c  ->  p 
C_  ( ( c  i^i  B )  vH  A ) ) ) )
9695exp4d 613 . . . . 5  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  ->  ( A  C_  c  ->  (
( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) )  ->  ( -.  q  =  p  ->  ( p  C_  c  ->  p 
C_  ( ( c  i^i  B )  vH  A ) ) ) ) ) )
9796exp32 609 . . . 4  |-  ( ( q  e. HAtoms  /\  r  e. HAtoms )  ->  ( c  e.  CH  ->  ( p  e. HAtoms  ->  ( A  C_  c  ->  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  ->  ( -.  q  =  p  ->  ( p 
C_  c  ->  p  C_  ( ( c  i^i 
B )  vH  A
) ) ) ) ) ) ) )
9897com34 87 . . 3  |-  ( ( q  e. HAtoms  /\  r  e. HAtoms )  ->  ( c  e.  CH  ->  ( A  C_  c  ->  ( p  e. HAtoms  ->  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  ->  ( -.  q  =  p  ->  ( p 
C_  c  ->  p  C_  ( ( c  i^i 
B )  vH  A
) ) ) ) ) ) ) )
9998imp4c 595 . 2  |-  ( ( q  e. HAtoms  /\  r  e. HAtoms )  ->  ( (
( c  e.  CH  /\  A  C_  c )  /\  p  e. HAtoms )  -> 
( ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) )  -> 
( -.  q  =  p  ->  ( p  C_  c  ->  p  C_  (
( c  i^i  B
)  vH  A )
) ) ) ) )
10099com24 91 1  |-  ( ( q  e. HAtoms  /\  r  e. HAtoms )  ->  ( -.  q  =  p  ->  ( ( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) )  ->  ( (
( c  e.  CH  /\  A  C_  c )  /\  p  e. HAtoms )  -> 
( p  C_  c  ->  p  C_  ( (
c  i^i  B )  vH  A ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869    =/= wne 2619    i^i cin 3436    C_ wss 3437  (class class class)co 6303   CHcch 26574    vH chj 26578   0Hc0h 26580  HAtomscat 26610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-inf2 8150  ax-cc 8867  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619  ax-addf 9620  ax-mulf 9621  ax-hilex 26644  ax-hfvadd 26645  ax-hvcom 26646  ax-hvass 26647  ax-hv0cl 26648  ax-hvaddid 26649  ax-hfvmul 26650  ax-hvmulid 26651  ax-hvmulass 26652  ax-hvdistr1 26653  ax-hvdistr2 26654  ax-hvmul0 26655  ax-hfi 26724  ax-his1 26727  ax-his2 26728  ax-his3 26729  ax-his4 26730  ax-hcompl 26847
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-fal 1444  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-iin 4300  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-se 4811  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-isom 5608  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-of 6543  df-om 6705  df-1st 6805  df-2nd 6806  df-supp 6924  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-2o 7189  df-oadd 7192  df-omul 7193  df-er 7369  df-map 7480  df-pm 7481  df-ixp 7529  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-fsupp 7888  df-fi 7929  df-sup 7960  df-inf 7961  df-oi 8029  df-card 8376  df-acn 8379  df-cda 8600  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-3 10671  df-4 10672  df-5 10673  df-6 10674  df-7 10675  df-8 10676  df-9 10677  df-10 10678  df-n0 10872  df-z 10940  df-dec 11054  df-uz 11162  df-q 11267  df-rp 11305  df-xneg 11411  df-xadd 11412  df-xmul 11413  df-ioo 11641  df-ico 11643  df-icc 11644  df-fz 11787  df-fzo 11918  df-fl 12029  df-seq 12215  df-exp 12274  df-hash 12517  df-cj 13156  df-re 13157  df-im 13158  df-sqrt 13292  df-abs 13293  df-clim 13545  df-rlim 13546  df-sum 13746  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-starv 15198  df-sca 15199  df-vsca 15200  df-ip 15201  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-hom 15207  df-cco 15208  df-rest 15314  df-topn 15315  df-0g 15333  df-gsum 15334  df-topgen 15335  df-pt 15336  df-prds 15339  df-xrs 15393  df-qtop 15399  df-imas 15400  df-xps 15403  df-mre 15485  df-mrc 15486  df-acs 15488  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-submnd 16576  df-mulg 16669  df-cntz 16964  df-cmn 17425  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-fbas 18960  df-fg 18961  df-cnfld 18964  df-top 19913  df-bases 19914  df-topon 19915  df-topsp 19916  df-cld 20026  df-ntr 20027  df-cls 20028  df-nei 20106  df-cn 20235  df-cnp 20236  df-lm 20237  df-haus 20323  df-tx 20569  df-hmeo 20762  df-fil 20853  df-fm 20945  df-flim 20946  df-flf 20947  df-xms 21327  df-ms 21328  df-tms 21329  df-cfil 22217  df-cau 22218  df-cmet 22219  df-grpo 25911  df-gid 25912  df-ginv 25913  df-gdiv 25914  df-ablo 26002  df-subgo 26022  df-vc 26157  df-nv 26203  df-va 26206  df-ba 26207  df-sm 26208  df-0v 26209  df-vs 26210  df-nmcv 26211  df-ims 26212  df-dip 26329  df-ssp 26353  df-ph 26446  df-cbn 26497  df-hnorm 26613  df-hba 26614  df-hvsub 26616  df-hlim 26617  df-hcau 26618  df-sh 26852  df-ch 26866  df-oc 26897  df-ch0 26898  df-shs 26953  df-span 26954  df-chj 26955  df-chsup 26956  df-pjh 27040  df-cv 27924  df-at 27983
This theorem is referenced by:  mdsymlem6  28053
  Copyright terms: Public domain W3C validator