HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsymlem5 Structured version   Visualization version   Unicode version

Theorem mdsymlem5 28141
Description: Lemma for mdsymi 28145. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsymlem1.1  |-  A  e. 
CH
mdsymlem1.2  |-  B  e. 
CH
mdsymlem1.3  |-  C  =  ( A  vH  p
)
Assertion
Ref Expression
mdsymlem5  |-  ( ( q  e. HAtoms  /\  r  e. HAtoms )  ->  ( -.  q  =  p  ->  ( ( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) )  ->  ( (
( c  e.  CH  /\  A  C_  c )  /\  p  e. HAtoms )  -> 
( p  C_  c  ->  p  C_  ( (
c  i^i  B )  vH  A ) ) ) ) ) )
Distinct variable groups:    r, q, C    p, c, q, r, A    B, c, p, q, r
Allowed substitution hints:    C( p, c)

Proof of Theorem mdsymlem5
StepHypRef Expression
1 df-ne 2643 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( q  =/=  p  <->  -.  q  =  p )
2 atnemeq0 28111 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( q  e. HAtoms  /\  p  e. HAtoms )  ->  ( q  =/=  p  <->  ( q  i^i  p )  =  0H ) )
31, 2syl5bbr 267 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( q  e. HAtoms  /\  p  e. HAtoms )  ->  ( -.  q  =  p  <->  ( q  i^i  p )  =  0H ) )
43anbi2d 718 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( q  e. HAtoms  /\  p  e. HAtoms )  ->  ( (
p  C_  ( q  vH  r )  /\  -.  q  =  p )  <->  ( p  C_  ( q  vH  r )  /\  (
q  i^i  p )  =  0H ) ) )
543adant3 1050 . . . . . . . . . . . . . . . . . . 19  |-  ( ( q  e. HAtoms  /\  p  e. HAtoms  /\  r  e. HAtoms )  ->  ( ( p  C_  ( q  vH  r
)  /\  -.  q  =  p )  <->  ( p  C_  ( q  vH  r
)  /\  ( q  i^i  p )  =  0H ) ) )
6 atelch 28078 . . . . . . . . . . . . . . . . . . . 20  |-  ( q  e. HAtoms  ->  q  e.  CH )
7 atexch 28115 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( q  e.  CH  /\  p  e. HAtoms  /\  r  e. HAtoms
)  ->  ( (
p  C_  ( q  vH  r )  /\  (
q  i^i  p )  =  0H )  ->  r  C_  ( q  vH  p
) ) )
86, 7syl3an1 1325 . . . . . . . . . . . . . . . . . . 19  |-  ( ( q  e. HAtoms  /\  p  e. HAtoms  /\  r  e. HAtoms )  ->  ( ( p  C_  ( q  vH  r
)  /\  ( q  i^i  p )  =  0H )  ->  r  C_  ( q  vH  p
) ) )
95, 8sylbid 223 . . . . . . . . . . . . . . . . . 18  |-  ( ( q  e. HAtoms  /\  p  e. HAtoms  /\  r  e. HAtoms )  ->  ( ( p  C_  ( q  vH  r
)  /\  -.  q  =  p )  ->  r  C_  ( q  vH  p
) ) )
109expd 443 . . . . . . . . . . . . . . . . 17  |-  ( ( q  e. HAtoms  /\  p  e. HAtoms  /\  r  e. HAtoms )  ->  ( p  C_  (
q  vH  r )  ->  ( -.  q  =  p  ->  r  C_  ( q  vH  p
) ) ) )
11103com23 1237 . . . . . . . . . . . . . . . 16  |-  ( ( q  e. HAtoms  /\  r  e. HAtoms  /\  p  e. HAtoms )  ->  ( p  C_  (
q  vH  r )  ->  ( -.  q  =  p  ->  r  C_  ( q  vH  p
) ) ) )
12113expa 1231 . . . . . . . . . . . . . . 15  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  p  e. HAtoms
)  ->  ( p  C_  ( q  vH  r
)  ->  ( -.  q  =  p  ->  r 
C_  ( q  vH  p ) ) ) )
1312adantrl 730 . . . . . . . . . . . . . 14  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  ->  (
p  C_  ( q  vH  r )  ->  ( -.  q  =  p  ->  r  C_  ( q  vH  p ) ) ) )
1413adantrd 475 . . . . . . . . . . . . 13  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  ->  (
( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) )  ->  ( -.  q  =  p  ->  r 
C_  ( q  vH  p ) ) ) )
1514imp32 440 . . . . . . . . . . . 12  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p
) )  ->  r  C_  ( q  vH  p
) )
1615adantrl 730 . . . . . . . . . . 11  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( A  C_  c  /\  ( ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p
) ) )  -> 
r  C_  ( q  vH  p ) )
1716adantrr 731 . . . . . . . . . 10  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( A  C_  c  /\  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p ) )  /\  p  C_  c ) )  ->  r  C_  (
q  vH  p )
)
18 simplrl 778 . . . . . . . . . . . 12  |-  ( ( ( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p )  ->  q  C_  A )
19 atelch 28078 . . . . . . . . . . . . . . . 16  |-  ( p  e. HAtoms  ->  p  e.  CH )
2019anim1i 578 . . . . . . . . . . . . . . 15  |-  ( ( p  e. HAtoms  /\  c  e.  CH )  ->  (
p  e.  CH  /\  c  e.  CH )
)
2120ancoms 460 . . . . . . . . . . . . . 14  |-  ( ( c  e.  CH  /\  p  e. HAtoms )  ->  ( p  e.  CH  /\  c  e.  CH )
)
22 mdsymlem1.1 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  A  e. 
CH
23 chub2 27242 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CH  /\  c  e.  CH )  ->  A  C_  ( c  vH  A ) )
2422, 23mpan 684 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( c  e.  CH  ->  A  C_  ( c  vH  A
) )
25 sstr 3426 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( q  C_  A  /\  A  C_  ( c  vH  A ) )  -> 
q  C_  ( c  vH  A ) )
2624, 25sylan2 482 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( q  C_  A  /\  c  e.  CH )  ->  q  C_  ( c  vH  A ) )
27 chub1 27241 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( c  e.  CH  /\  A  e.  CH )  ->  c  C_  ( c  vH  A ) )
2822, 27mpan2 685 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( c  e.  CH  ->  c  C_  ( c  vH  A
) )
29 sstr 3426 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( p  C_  c  /\  c  C_  ( c  vH  A ) )  ->  p  C_  ( c  vH  A ) )
3028, 29sylan2 482 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( p  C_  c  /\  c  e.  CH )  ->  p  C_  ( c  vH  A ) )
3126, 30anim12i 576 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( q  C_  A  /\  c  e.  CH )  /\  ( p  C_  c  /\  c  e.  CH )
)  ->  ( q  C_  ( c  vH  A
)  /\  p  C_  (
c  vH  A )
) )
3231anandirs 847 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( q  C_  A  /\  p  C_  c )  /\  c  e.  CH )  ->  ( q  C_  ( c  vH  A
)  /\  p  C_  (
c  vH  A )
) )
3332ancoms 460 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( c  e.  CH  /\  ( q  C_  A  /\  p  C_  c ) )  ->  ( q  C_  ( c  vH  A
)  /\  p  C_  (
c  vH  A )
) )
3433adantll 728 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( q  e. 
CH  /\  p  e.  CH )  /\  c  e. 
CH )  /\  (
q  C_  A  /\  p  C_  c ) )  ->  ( q  C_  ( c  vH  A
)  /\  p  C_  (
c  vH  A )
) )
35 chjcl 27091 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( c  e.  CH  /\  A  e.  CH )  ->  ( c  vH  A
)  e.  CH )
3622, 35mpan2 685 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( c  e.  CH  ->  (
c  vH  A )  e.  CH )
37 chlub 27243 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( q  e.  CH  /\  p  e.  CH  /\  (
c  vH  A )  e.  CH )  ->  (
( q  C_  (
c  vH  A )  /\  p  C_  ( c  vH  A ) )  <-> 
( q  vH  p
)  C_  ( c  vH  A ) ) )
3836, 37syl3an3 1327 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( q  e.  CH  /\  p  e.  CH  /\  c  e.  CH )  ->  (
( q  C_  (
c  vH  A )  /\  p  C_  ( c  vH  A ) )  <-> 
( q  vH  p
)  C_  ( c  vH  A ) ) )
39383expa 1231 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( q  e.  CH  /\  p  e.  CH )  /\  c  e.  CH )  ->  ( ( q  C_  ( c  vH  A
)  /\  p  C_  (
c  vH  A )
)  <->  ( q  vH  p )  C_  (
c  vH  A )
) )
4039adantr 472 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( q  e. 
CH  /\  p  e.  CH )  /\  c  e. 
CH )  /\  (
q  C_  A  /\  p  C_  c ) )  ->  ( ( q 
C_  ( c  vH  A )  /\  p  C_  ( c  vH  A
) )  <->  ( q  vH  p )  C_  (
c  vH  A )
) )
4134, 40mpbid 215 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( q  e. 
CH  /\  p  e.  CH )  /\  c  e. 
CH )  /\  (
q  C_  A  /\  p  C_  c ) )  ->  ( q  vH  p )  C_  (
c  vH  A )
)
4241adantrl 730 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( q  e. 
CH  /\  p  e.  CH )  /\  c  e. 
CH )  /\  ( A  C_  c  /\  (
q  C_  A  /\  p  C_  c ) ) )  ->  ( q  vH  p )  C_  (
c  vH  A )
)
43 chlejb2 27247 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CH  /\  c  e.  CH )  ->  ( A  C_  c  <->  ( c  vH  A )  =  c ) )
4422, 43mpan 684 . . . . . . . . . . . . . . . . . . 19  |-  ( c  e.  CH  ->  ( A  C_  c  <->  ( c  vH  A )  =  c ) )
4544biimpa 492 . . . . . . . . . . . . . . . . . 18  |-  ( ( c  e.  CH  /\  A  C_  c )  -> 
( c  vH  A
)  =  c )
4645ad2ant2lr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( q  e. 
CH  /\  p  e.  CH )  /\  c  e. 
CH )  /\  ( A  C_  c  /\  (
q  C_  A  /\  p  C_  c ) ) )  ->  ( c  vH  A )  =  c )
4742, 46sseqtrd 3454 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( q  e. 
CH  /\  p  e.  CH )  /\  c  e. 
CH )  /\  ( A  C_  c  /\  (
q  C_  A  /\  p  C_  c ) ) )  ->  ( q  vH  p )  C_  c
)
4847exp45 625 . . . . . . . . . . . . . . 15  |-  ( ( ( q  e.  CH  /\  p  e.  CH )  /\  c  e.  CH )  ->  ( A  C_  c  ->  ( q  C_  A  ->  ( p  C_  c  ->  ( q  vH  p
)  C_  c )
) ) )
4948anasss 659 . . . . . . . . . . . . . 14  |-  ( ( q  e.  CH  /\  ( p  e.  CH  /\  c  e.  CH )
)  ->  ( A  C_  c  ->  ( q  C_  A  ->  ( p  C_  c  ->  ( q  vH  p )  C_  c
) ) ) )
506, 21, 49syl2an 485 . . . . . . . . . . . . 13  |-  ( ( q  e. HAtoms  /\  (
c  e.  CH  /\  p  e. HAtoms ) )  ->  ( A  C_  c  ->  ( q  C_  A  ->  ( p  C_  c  ->  ( q  vH  p
)  C_  c )
) ) )
5150adantlr 729 . . . . . . . . . . . 12  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  ->  ( A  C_  c  ->  (
q  C_  A  ->  ( p  C_  c  ->  ( q  vH  p ) 
C_  c ) ) ) )
5218, 51syl7 69 . . . . . . . . . . 11  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  ->  ( A  C_  c  ->  (
( ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p
)  ->  ( p  C_  c  ->  ( q  vH  p )  C_  c
) ) ) )
5352imp44 607 . . . . . . . . . 10  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( A  C_  c  /\  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p ) )  /\  p  C_  c ) )  ->  ( q  vH  p )  C_  c
)
5417, 53sstrd 3428 . . . . . . . . 9  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( A  C_  c  /\  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p ) )  /\  p  C_  c ) )  ->  r  C_  c
)
55 simplrr 779 . . . . . . . . . . 11  |-  ( ( ( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p )  ->  r  C_  B )
5655ad2antlr 741 . . . . . . . . . 10  |-  ( ( ( A  C_  c  /\  ( ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p
) )  /\  p  C_  c )  ->  r  C_  B )
5756adantl 473 . . . . . . . . 9  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( A  C_  c  /\  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p ) )  /\  p  C_  c ) )  ->  r  C_  B
)
5854, 57ssind 3647 . . . . . . . 8  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( A  C_  c  /\  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p ) )  /\  p  C_  c ) )  ->  r  C_  (
c  i^i  B )
)
59 atelch 28078 . . . . . . . . . . . . . . . . 17  |-  ( r  e. HAtoms  ->  r  e.  CH )
606, 59anim12i 576 . . . . . . . . . . . . . . . 16  |-  ( ( q  e. HAtoms  /\  r  e. HAtoms )  ->  ( q  e.  CH  /\  r  e. 
CH ) )
61 mdsymlem1.2 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  B  e. 
CH
62 chincl 27233 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( c  e.  CH  /\  B  e.  CH )  ->  ( c  i^i  B
)  e.  CH )
6361, 62mpan2 685 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( c  e.  CH  ->  (
c  i^i  B )  e.  CH )
64 chlej1 27244 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( r  e.  CH  /\  ( c  i^i  B
)  e.  CH  /\  q  e.  CH )  /\  r  C_  ( c  i^i  B ) )  ->  ( r  vH  q )  C_  (
( c  i^i  B
)  vH  q )
)
6564ex 441 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( r  e.  CH  /\  ( c  i^i  B
)  e.  CH  /\  q  e.  CH )  ->  ( r  C_  (
c  i^i  B )  ->  ( r  vH  q
)  C_  ( (
c  i^i  B )  vH  q ) ) )
6663, 65syl3an2 1326 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( r  e.  CH  /\  c  e.  CH  /\  q  e.  CH )  ->  (
r  C_  ( c  i^i  B )  ->  (
r  vH  q )  C_  ( ( c  i^i 
B )  vH  q
) ) )
67663comr 1239 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( q  e.  CH  /\  r  e.  CH  /\  c  e.  CH )  ->  (
r  C_  ( c  i^i  B )  ->  (
r  vH  q )  C_  ( ( c  i^i 
B )  vH  q
) ) )
68673expa 1231 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( q  e.  CH  /\  r  e.  CH )  /\  c  e.  CH )  ->  ( r  C_  (
c  i^i  B )  ->  ( r  vH  q
)  C_  ( (
c  i^i  B )  vH  q ) ) )
6968adantr 472 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  q  C_  A )  ->  (
r  C_  ( c  i^i  B )  ->  (
r  vH  q )  C_  ( ( c  i^i 
B )  vH  q
) ) )
70 chlej2 27245 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( q  e.  CH  /\  A  e.  CH  /\  ( c  i^i  B
)  e.  CH )  /\  q  C_  A )  ->  ( ( c  i^i  B )  vH  q )  C_  (
( c  i^i  B
)  vH  A )
)
7122, 70mp3anl2 1385 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( q  e.  CH  /\  ( c  i^i  B
)  e.  CH )  /\  q  C_  A )  ->  ( ( c  i^i  B )  vH  q )  C_  (
( c  i^i  B
)  vH  A )
)
7263, 71sylanl2 663 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( q  e.  CH  /\  c  e.  CH )  /\  q  C_  A )  ->  ( ( c  i^i  B )  vH  q )  C_  (
( c  i^i  B
)  vH  A )
)
7372adantllr 733 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  q  C_  A )  ->  (
( c  i^i  B
)  vH  q )  C_  ( ( c  i^i 
B )  vH  A
) )
74 sstr2 3425 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( r  vH  q ) 
C_  ( ( c  i^i  B )  vH  q )  ->  (
( ( c  i^i 
B )  vH  q
)  C_  ( (
c  i^i  B )  vH  A )  ->  (
r  vH  q )  C_  ( ( c  i^i 
B )  vH  A
) ) )
7573, 74syl5com 30 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  q  C_  A )  ->  (
( r  vH  q
)  C_  ( (
c  i^i  B )  vH  q )  ->  (
r  vH  q )  C_  ( ( c  i^i 
B )  vH  A
) ) )
76 chjcom 27240 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( q  e.  CH  /\  r  e.  CH )  ->  ( q  vH  r
)  =  ( r  vH  q ) )
7776ad2antrr 740 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  q  C_  A )  ->  (
q  vH  r )  =  ( r  vH  q ) )
7877sseq1d 3445 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  q  C_  A )  ->  (
( q  vH  r
)  C_  ( (
c  i^i  B )  vH  A )  <->  ( r  vH  q )  C_  (
( c  i^i  B
)  vH  A )
) )
7975, 78sylibrd 242 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  q  C_  A )  ->  (
( r  vH  q
)  C_  ( (
c  i^i  B )  vH  q )  ->  (
q  vH  r )  C_  ( ( c  i^i 
B )  vH  A
) ) )
8069, 79syld 44 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  q  C_  A )  ->  (
r  C_  ( c  i^i  B )  ->  (
q  vH  r )  C_  ( ( c  i^i 
B )  vH  A
) ) )
8180adantrl 730 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  (
p  C_  ( q  vH  r )  /\  q  C_  A ) )  -> 
( r  C_  (
c  i^i  B )  ->  ( q  vH  r
)  C_  ( (
c  i^i  B )  vH  A ) ) )
82 sstr2 3425 . . . . . . . . . . . . . . . . . . 19  |-  ( p 
C_  ( q  vH  r )  ->  (
( q  vH  r
)  C_  ( (
c  i^i  B )  vH  A )  ->  p  C_  ( ( c  i^i 
B )  vH  A
) ) )
8382ad2antrl 742 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  (
p  C_  ( q  vH  r )  /\  q  C_  A ) )  -> 
( ( q  vH  r )  C_  (
( c  i^i  B
)  vH  A )  ->  p  C_  ( (
c  i^i  B )  vH  A ) ) )
8481, 83syld 44 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( q  e. 
CH  /\  r  e.  CH )  /\  c  e. 
CH )  /\  (
p  C_  ( q  vH  r )  /\  q  C_  A ) )  -> 
( r  C_  (
c  i^i  B )  ->  p  C_  ( (
c  i^i  B )  vH  A ) ) )
8584exp32 616 . . . . . . . . . . . . . . . 16  |-  ( ( ( q  e.  CH  /\  r  e.  CH )  /\  c  e.  CH )  ->  ( p  C_  (
q  vH  r )  ->  ( q  C_  A  ->  ( r  C_  (
c  i^i  B )  ->  p  C_  ( (
c  i^i  B )  vH  A ) ) ) ) )
8660, 85sylan 479 . . . . . . . . . . . . . . 15  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  c  e. 
CH )  ->  (
p  C_  ( q  vH  r )  ->  (
q  C_  A  ->  ( r  C_  ( c  i^i  B )  ->  p  C_  ( ( c  i^i 
B )  vH  A
) ) ) ) )
8786adantrr 731 . . . . . . . . . . . . . 14  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  ->  (
p  C_  ( q  vH  r )  ->  (
q  C_  A  ->  ( r  C_  ( c  i^i  B )  ->  p  C_  ( ( c  i^i 
B )  vH  A
) ) ) ) )
8887imp31 439 . . . . . . . . . . . . 13  |-  ( ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  p  C_  ( q  vH  r ) )  /\  q  C_  A
)  ->  ( r  C_  ( c  i^i  B
)  ->  p  C_  (
( c  i^i  B
)  vH  A )
) )
8988adantrr 731 . . . . . . . . . . . 12  |-  ( ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  p  C_  ( q  vH  r ) )  /\  ( q  C_  A  /\  r  C_  B
) )  ->  (
r  C_  ( c  i^i  B )  ->  p  C_  ( ( c  i^i 
B )  vH  A
) ) )
9089anasss 659 . . . . . . . . . . 11  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) ) )  ->  (
r  C_  ( c  i^i  B )  ->  p  C_  ( ( c  i^i 
B )  vH  A
) ) )
9190adantrr 731 . . . . . . . . . 10  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p
) )  ->  (
r  C_  ( c  i^i  B )  ->  p  C_  ( ( c  i^i 
B )  vH  A
) ) )
9291adantrl 730 . . . . . . . . 9  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( A  C_  c  /\  ( ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p
) ) )  -> 
( r  C_  (
c  i^i  B )  ->  p  C_  ( (
c  i^i  B )  vH  A ) ) )
9392adantrr 731 . . . . . . . 8  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( A  C_  c  /\  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p ) )  /\  p  C_  c ) )  ->  ( r  C_  ( c  i^i  B
)  ->  p  C_  (
( c  i^i  B
)  vH  A )
) )
9458, 93mpd 15 . . . . . . 7  |-  ( ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  /\  ( ( A  C_  c  /\  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p ) )  /\  p  C_  c ) )  ->  p  C_  (
( c  i^i  B
)  vH  A )
)
9594exp32 616 . . . . . 6  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  ->  (
( A  C_  c  /\  ( ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) )  /\  -.  q  =  p
) )  ->  (
p  C_  c  ->  p 
C_  ( ( c  i^i  B )  vH  A ) ) ) )
9695exp4d 620 . . . . 5  |-  ( ( ( q  e. HAtoms  /\  r  e. HAtoms )  /\  ( c  e.  CH  /\  p  e. HAtoms ) )  ->  ( A  C_  c  ->  (
( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) )  ->  ( -.  q  =  p  ->  ( p  C_  c  ->  p 
C_  ( ( c  i^i  B )  vH  A ) ) ) ) ) )
9796exp32 616 . . . 4  |-  ( ( q  e. HAtoms  /\  r  e. HAtoms )  ->  ( c  e.  CH  ->  ( p  e. HAtoms  ->  ( A  C_  c  ->  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  ->  ( -.  q  =  p  ->  ( p 
C_  c  ->  p  C_  ( ( c  i^i 
B )  vH  A
) ) ) ) ) ) ) )
9897com34 85 . . 3  |-  ( ( q  e. HAtoms  /\  r  e. HAtoms )  ->  ( c  e.  CH  ->  ( A  C_  c  ->  ( p  e. HAtoms  ->  ( ( p 
C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) )  ->  ( -.  q  =  p  ->  ( p 
C_  c  ->  p  C_  ( ( c  i^i 
B )  vH  A
) ) ) ) ) ) ) )
9998imp4c 602 . 2  |-  ( ( q  e. HAtoms  /\  r  e. HAtoms )  ->  ( (
( c  e.  CH  /\  A  C_  c )  /\  p  e. HAtoms )  -> 
( ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) )  -> 
( -.  q  =  p  ->  ( p  C_  c  ->  p  C_  (
( c  i^i  B
)  vH  A )
) ) ) ) )
10099com24 89 1  |-  ( ( q  e. HAtoms  /\  r  e. HAtoms )  ->  ( -.  q  =  p  ->  ( ( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) )  ->  ( (
( c  e.  CH  /\  A  C_  c )  /\  p  e. HAtoms )  -> 
( p  C_  c  ->  p  C_  ( (
c  i^i  B )  vH  A ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641    i^i cin 3389    C_ wss 3390  (class class class)co 6308   CHcch 26663    vH chj 26667   0Hc0h 26669  HAtomscat 26699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cc 8883  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637  ax-hilex 26733  ax-hfvadd 26734  ax-hvcom 26735  ax-hvass 26736  ax-hv0cl 26737  ax-hvaddid 26738  ax-hfvmul 26739  ax-hvmulid 26740  ax-hvmulass 26741  ax-hvdistr1 26742  ax-hvdistr2 26743  ax-hvmul0 26744  ax-hfi 26813  ax-his1 26816  ax-his2 26817  ax-his3 26818  ax-his4 26819  ax-hcompl 26936
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-omul 7205  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-acn 8394  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-rlim 13630  df-sum 13830  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-cn 20320  df-cnp 20321  df-lm 20322  df-haus 20408  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cfil 22303  df-cau 22304  df-cmet 22305  df-grpo 26000  df-gid 26001  df-ginv 26002  df-gdiv 26003  df-ablo 26091  df-subgo 26111  df-vc 26246  df-nv 26292  df-va 26295  df-ba 26296  df-sm 26297  df-0v 26298  df-vs 26299  df-nmcv 26300  df-ims 26301  df-dip 26418  df-ssp 26442  df-ph 26535  df-cbn 26586  df-hnorm 26702  df-hba 26703  df-hvsub 26705  df-hlim 26706  df-hcau 26707  df-sh 26941  df-ch 26955  df-oc 26986  df-ch0 26987  df-shs 27042  df-span 27043  df-chj 27044  df-chsup 27045  df-pjh 27129  df-cv 28013  df-at 28072
This theorem is referenced by:  mdsymlem6  28142
  Copyright terms: Public domain W3C validator