HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdi Structured version   Visualization version   Unicode version

Theorem mdi 27959
Description: Consequence of the modular pair property. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mdi  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( A  MH  B  /\  C  C_  B ) )  ->  ( ( C  vH  A )  i^i 
B )  =  ( C  vH  ( A  i^i  B ) ) )

Proof of Theorem mdi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mdbr 27958 . . . . 5  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH  B  <->  A. x  e.  CH  (
x  C_  B  ->  ( ( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) ) )
21biimpd 212 . . . 4  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH  B  ->  A. x  e.  CH  ( x  C_  B  -> 
( ( x  vH  A )  i^i  B
)  =  ( x  vH  ( A  i^i  B ) ) ) ) )
3 sseq1 3420 . . . . . 6  |-  ( x  =  C  ->  (
x  C_  B  <->  C  C_  B
) )
4 oveq1 6282 . . . . . . . 8  |-  ( x  =  C  ->  (
x  vH  A )  =  ( C  vH  A ) )
54ineq1d 3600 . . . . . . 7  |-  ( x  =  C  ->  (
( x  vH  A
)  i^i  B )  =  ( ( C  vH  A )  i^i 
B ) )
6 oveq1 6282 . . . . . . 7  |-  ( x  =  C  ->  (
x  vH  ( A  i^i  B ) )  =  ( C  vH  ( A  i^i  B ) ) )
75, 6eqeq12d 2466 . . . . . 6  |-  ( x  =  C  ->  (
( ( x  vH  A )  i^i  B
)  =  ( x  vH  ( A  i^i  B ) )  <->  ( ( C  vH  A )  i^i 
B )  =  ( C  vH  ( A  i^i  B ) ) ) )
83, 7imbi12d 326 . . . . 5  |-  ( x  =  C  ->  (
( x  C_  B  ->  ( ( x  vH  A )  i^i  B
)  =  ( x  vH  ( A  i^i  B ) ) )  <->  ( C  C_  B  ->  ( ( C  vH  A )  i^i 
B )  =  ( C  vH  ( A  i^i  B ) ) ) ) )
98rspcv 3113 . . . 4  |-  ( C  e.  CH  ->  ( A. x  e.  CH  (
x  C_  B  ->  ( ( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) )  ->  ( C  C_  B  ->  (
( C  vH  A
)  i^i  B )  =  ( C  vH  ( A  i^i  B ) ) ) ) )
102, 9sylan9 667 . . 3  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  C  e.  CH )  ->  ( A  MH  B  ->  ( C  C_  B  ->  ( ( C  vH  A )  i^i  B
)  =  ( C  vH  ( A  i^i  B ) ) ) ) )
11103impa 1205 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  ->  ( A  MH  B  ->  ( C  C_  B  ->  ( ( C  vH  A
)  i^i  B )  =  ( C  vH  ( A  i^i  B ) ) ) ) )
1211imp32 439 1  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( A  MH  B  /\  C  C_  B ) )  ->  ( ( C  vH  A )  i^i 
B )  =  ( C  vH  ( A  i^i  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    /\ w3a 986    = wceq 1447    e. wcel 1890   A.wral 2736    i^i cin 3370    C_ wss 3371   class class class wbr 4373  (class class class)co 6275   CHcch 26593    vH chj 26597    MH cmd 26630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1672  ax-4 1685  ax-5 1761  ax-6 1808  ax-7 1854  ax-9 1899  ax-10 1918  ax-11 1923  ax-12 1936  ax-13 2091  ax-ext 2431  ax-sep 4496  ax-nul 4505  ax-pr 4611
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 988  df-tru 1450  df-ex 1667  df-nf 1671  df-sb 1801  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2623  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3014  df-dif 3374  df-un 3376  df-in 3378  df-ss 3385  df-nul 3699  df-if 3849  df-sn 3936  df-pr 3938  df-op 3942  df-uni 4168  df-br 4374  df-opab 4433  df-iota 5524  df-fv 5568  df-ov 6278  df-md 27944
This theorem is referenced by:  mdsl3  27980  mdslmd3i  27996  mdexchi  27999  atabsi  28065
  Copyright terms: Public domain W3C validator