HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdexchi Unicode version

Theorem mdexchi 22745
Description: An exchange lemma for modular pairs. Lemma 1.6 of [MaedaMaeda] p. 2. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdexch.1  |-  A  e. 
CH
mdexch.2  |-  B  e. 
CH
mdexch.3  |-  C  e. 
CH
Assertion
Ref Expression
mdexchi  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  (
( C  vH  A
)  MH  B  /\  ( ( C  vH  A )  i^i  B
)  =  ( A  i^i  B ) ) )

Proof of Theorem mdexchi
StepHypRef Expression
1 mdexch.3 . . . . . . . . . . . . . . 15  |-  C  e. 
CH
2 mdexch.1 . . . . . . . . . . . . . . 15  |-  A  e. 
CH
3 chjass 21942 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  CH  /\  A  e.  CH  /\  x  e.  CH )  ->  (
( C  vH  A
)  vH  x )  =  ( C  vH  ( A  vH  x
) ) )
41, 2, 3mp3an12 1272 . . . . . . . . . . . . . 14  |-  ( x  e.  CH  ->  (
( C  vH  A
)  vH  x )  =  ( C  vH  ( A  vH  x
) ) )
51, 2chjcli 21866 . . . . . . . . . . . . . . 15  |-  ( C  vH  A )  e. 
CH
6 chjcom 21915 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CH  /\  ( C  vH  A )  e.  CH )  -> 
( x  vH  ( C  vH  A ) )  =  ( ( C  vH  A )  vH  x ) )
75, 6mpan2 655 . . . . . . . . . . . . . 14  |-  ( x  e.  CH  ->  (
x  vH  ( C  vH  A ) )  =  ( ( C  vH  A )  vH  x
) )
8 chjcl 21766 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( A  vH  x
)  e.  CH )
92, 8mpan 654 . . . . . . . . . . . . . . 15  |-  ( x  e.  CH  ->  ( A  vH  x )  e. 
CH )
10 chjcom 21915 . . . . . . . . . . . . . . 15  |-  ( ( ( A  vH  x
)  e.  CH  /\  C  e.  CH )  ->  ( ( A  vH  x )  vH  C
)  =  ( C  vH  ( A  vH  x ) ) )
119, 1, 10sylancl 646 . . . . . . . . . . . . . 14  |-  ( x  e.  CH  ->  (
( A  vH  x
)  vH  C )  =  ( C  vH  ( A  vH  x
) ) )
124, 7, 113eqtr4d 2295 . . . . . . . . . . . . 13  |-  ( x  e.  CH  ->  (
x  vH  ( C  vH  A ) )  =  ( ( A  vH  x )  vH  C
) )
1312ineq1d 3277 . . . . . . . . . . . 12  |-  ( x  e.  CH  ->  (
( x  vH  ( C  vH  A ) )  i^i  B )  =  ( ( ( A  vH  x )  vH  C )  i^i  B
) )
14 inass 3286 . . . . . . . . . . . . 13  |-  ( ( ( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  i^i 
B )  =  ( ( ( A  vH  x )  vH  C
)  i^i  ( ( A  vH  B )  i^i 
B ) )
15 incom 3269 . . . . . . . . . . . . . . 15  |-  ( ( A  vH  B )  i^i  B )  =  ( B  i^i  ( A  vH  B ) )
16 mdexch.2 . . . . . . . . . . . . . . . . . 18  |-  B  e. 
CH
172, 16chjcomi 21877 . . . . . . . . . . . . . . . . 17  |-  ( A  vH  B )  =  ( B  vH  A
)
1817ineq2i 3275 . . . . . . . . . . . . . . . 16  |-  ( B  i^i  ( A  vH  B ) )  =  ( B  i^i  ( B  vH  A ) )
1916, 2chabs2i 21928 . . . . . . . . . . . . . . . 16  |-  ( B  i^i  ( B  vH  A ) )  =  B
2018, 19eqtri 2273 . . . . . . . . . . . . . . 15  |-  ( B  i^i  ( A  vH  B ) )  =  B
2115, 20eqtri 2273 . . . . . . . . . . . . . 14  |-  ( ( A  vH  B )  i^i  B )  =  B
2221ineq2i 3275 . . . . . . . . . . . . 13  |-  ( ( ( A  vH  x
)  vH  C )  i^i  ( ( A  vH  B )  i^i  B
) )  =  ( ( ( A  vH  x )  vH  C
)  i^i  B )
2314, 22eqtri 2273 . . . . . . . . . . . 12  |-  ( ( ( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  i^i 
B )  =  ( ( ( A  vH  x )  vH  C
)  i^i  B )
2413, 23syl6eqr 2303 . . . . . . . . . . 11  |-  ( x  e.  CH  ->  (
( x  vH  ( C  vH  A ) )  i^i  B )  =  ( ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B
) )  i^i  B
) )
2524ad2antrr 709 . . . . . . . . . 10  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  =  ( ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B ) )  i^i  B ) )
26 chlej2 21920 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  CH  /\  B  e.  CH  /\  A  e.  CH )  /\  x  C_  B )  ->  ( A  vH  x )  C_  ( A  vH  B ) )
2726ex 425 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CH  /\  B  e.  CH  /\  A  e.  CH )  ->  (
x  C_  B  ->  ( A  vH  x ) 
C_  ( A  vH  B ) ) )
2816, 2, 27mp3an23 1274 . . . . . . . . . . . . . . 15  |-  ( x  e.  CH  ->  (
x  C_  B  ->  ( A  vH  x ) 
C_  ( A  vH  B ) ) )
292, 16chjcli 21866 . . . . . . . . . . . . . . . . . 18  |-  ( A  vH  B )  e. 
CH
30 mdi 22705 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( C  e.  CH  /\  ( A  vH  B
)  e.  CH  /\  ( A  vH  x
)  e.  CH )  /\  ( C  MH  ( A  vH  B )  /\  ( A  vH  x
)  C_  ( A  vH  B ) ) )  ->  ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B
) )  =  ( ( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) ) )
3130exp32 591 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  CH  /\  ( A  vH  B )  e.  CH  /\  ( A  vH  x )  e. 
CH )  ->  ( C  MH  ( A  vH  B )  ->  (
( A  vH  x
)  C_  ( A  vH  B )  ->  (
( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  =  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
321, 29, 31mp3an12 1272 . . . . . . . . . . . . . . . . 17  |-  ( ( A  vH  x )  e.  CH  ->  ( C  MH  ( A  vH  B )  ->  (
( A  vH  x
)  C_  ( A  vH  B )  ->  (
( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  =  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
339, 32syl 17 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CH  ->  ( C  MH  ( A  vH  B )  ->  (
( A  vH  x
)  C_  ( A  vH  B )  ->  (
( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  =  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
3433com23 74 . . . . . . . . . . . . . . 15  |-  ( x  e.  CH  ->  (
( A  vH  x
)  C_  ( A  vH  B )  ->  ( C  MH  ( A  vH  B )  ->  (
( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  =  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
3528, 34syld 42 . . . . . . . . . . . . . 14  |-  ( x  e.  CH  ->  (
x  C_  B  ->  ( C  MH  ( A  vH  B )  -> 
( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B ) )  =  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
3635imp31 423 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  C  MH  ( A  vH  B ) )  ->  ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B
) )  =  ( ( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) ) )
3736adantrr 700 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B
) )  =  ( ( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) ) )
381, 29chincli 21869 . . . . . . . . . . . . . . . . 17  |-  ( C  i^i  ( A  vH  B ) )  e. 
CH
39 chlej2 21920 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  i^i  ( A  vH  B ) )  e.  CH  /\  A  e.  CH  /\  ( A  vH  x )  e. 
CH )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  (
( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) )  C_  ( ( A  vH  x )  vH  A
) )
4039ex 425 . . . . . . . . . . . . . . . . 17  |-  ( ( ( C  i^i  ( A  vH  B ) )  e.  CH  /\  A  e.  CH  /\  ( A  vH  x )  e. 
CH )  ->  (
( C  i^i  ( A  vH  B ) ) 
C_  A  ->  (
( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) )  C_  ( ( A  vH  x )  vH  A
) ) )
4138, 2, 40mp3an12 1272 . . . . . . . . . . . . . . . 16  |-  ( ( A  vH  x )  e.  CH  ->  (
( C  i^i  ( A  vH  B ) ) 
C_  A  ->  (
( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) )  C_  ( ( A  vH  x )  vH  A
) ) )
429, 41syl 17 . . . . . . . . . . . . . . 15  |-  ( x  e.  CH  ->  (
( C  i^i  ( A  vH  B ) ) 
C_  A  ->  (
( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) )  C_  ( ( A  vH  x )  vH  A
) ) )
4342imp 420 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CH  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) 
C_  ( ( A  vH  x )  vH  A ) )
44 chjcom 21915 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  vH  x
)  e.  CH  /\  A  e.  CH )  ->  ( ( A  vH  x )  vH  A
)  =  ( A  vH  ( A  vH  x ) ) )
459, 2, 44sylancl 646 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CH  ->  (
( A  vH  x
)  vH  A )  =  ( A  vH  ( A  vH  x
) ) )
462chjidmi 21930 . . . . . . . . . . . . . . . . . 18  |-  ( A  vH  A )  =  A
4746oveq1i 5720 . . . . . . . . . . . . . . . . 17  |-  ( ( A  vH  A )  vH  x )  =  ( A  vH  x
)
48 chjass 21942 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CH  /\  A  e.  CH  /\  x  e.  CH )  ->  (
( A  vH  A
)  vH  x )  =  ( A  vH  ( A  vH  x
) ) )
492, 2, 48mp3an12 1272 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CH  ->  (
( A  vH  A
)  vH  x )  =  ( A  vH  ( A  vH  x
) ) )
50 chjcom 21915 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( A  vH  x
)  =  ( x  vH  A ) )
512, 50mpan 654 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CH  ->  ( A  vH  x )  =  ( x  vH  A
) )
5247, 49, 513eqtr3a 2309 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CH  ->  ( A  vH  ( A  vH  x ) )  =  ( x  vH  A
) )
5345, 52eqtrd 2285 . . . . . . . . . . . . . . 15  |-  ( x  e.  CH  ->  (
( A  vH  x
)  vH  A )  =  ( x  vH  A ) )
5453adantr 453 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CH  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( A  vH  x )  vH  A
)  =  ( x  vH  A ) )
5543, 54sseqtrd 3135 . . . . . . . . . . . . 13  |-  ( ( x  e.  CH  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) 
C_  ( x  vH  A ) )
5655ad2ant2rl 732 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) )  C_  ( x  vH  A ) )
5737, 56eqsstrd 3133 . . . . . . . . . . 11  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B
) )  C_  (
x  vH  A )
)
58 ssrin 3301 . . . . . . . . . . 11  |-  ( ( ( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  C_  ( x  vH  A )  ->  ( ( ( ( A  vH  x
)  vH  C )  i^i  ( A  vH  B
) )  i^i  B
)  C_  ( (
x  vH  A )  i^i  B ) )
5957, 58syl 17 . . . . . . . . . 10  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( ( ( A  vH  x
)  vH  C )  i^i  ( A  vH  B
) )  i^i  B
)  C_  ( (
x  vH  A )  i^i  B ) )
6025, 59eqsstrd 3133 . . . . . . . . 9  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
( x  vH  A
)  i^i  B )
)
6160adantrl 699 . . . . . . . 8  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( A  MH  B  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) ) )  ->  ( (
x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
( x  vH  A
)  i^i  B )
)
62 mdi 22705 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  x  e.  CH )  /\  ( A  MH  B  /\  x  C_  B ) )  ->  ( (
x  vH  A )  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) )
6362exp32 591 . . . . . . . . . . . . 13  |-  ( ( A  e.  CH  /\  B  e.  CH  /\  x  e.  CH )  ->  ( A  MH  B  ->  ( x  C_  B  ->  ( ( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) ) )
642, 16, 63mp3an12 1272 . . . . . . . . . . . 12  |-  ( x  e.  CH  ->  ( A  MH  B  ->  ( x  C_  B  ->  ( ( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) ) )
6564com23 74 . . . . . . . . . . 11  |-  ( x  e.  CH  ->  (
x  C_  B  ->  ( A  MH  B  -> 
( ( x  vH  A )  i^i  B
)  =  ( x  vH  ( A  i^i  B ) ) ) ) )
6665imp31 423 . . . . . . . . . 10  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  A  MH  B
)  ->  ( (
x  vH  A )  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) )
672, 1chub2i 21879 . . . . . . . . . . . . 13  |-  A  C_  ( C  vH  A )
68 ssrin 3301 . . . . . . . . . . . . 13  |-  ( A 
C_  ( C  vH  A )  ->  ( A  i^i  B )  C_  ( ( C  vH  A )  i^i  B
) )
6967, 68ax-mp 10 . . . . . . . . . . . 12  |-  ( A  i^i  B )  C_  ( ( C  vH  A )  i^i  B
)
702, 16chincli 21869 . . . . . . . . . . . . 13  |-  ( A  i^i  B )  e. 
CH
715, 16chincli 21869 . . . . . . . . . . . . 13  |-  ( ( C  vH  A )  i^i  B )  e. 
CH
72 chlej2 21920 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  i^i  B )  e.  CH  /\  ( ( C  vH  A )  i^i  B
)  e.  CH  /\  x  e.  CH )  /\  ( A  i^i  B
)  C_  ( ( C  vH  A )  i^i 
B ) )  -> 
( x  vH  ( A  i^i  B ) ) 
C_  ( x  vH  ( ( C  vH  A )  i^i  B
) ) )
7372ex 425 . . . . . . . . . . . . 13  |-  ( ( ( A  i^i  B
)  e.  CH  /\  ( ( C  vH  A )  i^i  B
)  e.  CH  /\  x  e.  CH )  ->  ( ( A  i^i  B )  C_  ( ( C  vH  A )  i^i 
B )  ->  (
x  vH  ( A  i^i  B ) )  C_  ( x  vH  (
( C  vH  A
)  i^i  B )
) ) )
7470, 71, 73mp3an12 1272 . . . . . . . . . . . 12  |-  ( x  e.  CH  ->  (
( A  i^i  B
)  C_  ( ( C  vH  A )  i^i 
B )  ->  (
x  vH  ( A  i^i  B ) )  C_  ( x  vH  (
( C  vH  A
)  i^i  B )
) ) )
7569, 74mpi 18 . . . . . . . . . . 11  |-  ( x  e.  CH  ->  (
x  vH  ( A  i^i  B ) )  C_  ( x  vH  (
( C  vH  A
)  i^i  B )
) )
7675ad2antrr 709 . . . . . . . . . 10  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  A  MH  B
)  ->  ( x  vH  ( A  i^i  B
) )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) )
7766, 76eqsstrd 3133 . . . . . . . . 9  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  A  MH  B
)  ->  ( (
x  vH  A )  i^i  B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) )
7877adantrr 700 . . . . . . . 8  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( A  MH  B  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) ) )  ->  ( (
x  vH  A )  i^i  B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) )
7961, 78sstrd 3110 . . . . . . 7  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( A  MH  B  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) ) )  ->  ( (
x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) )
8079exp31 590 . . . . . 6  |-  ( x  e.  CH  ->  (
x  C_  B  ->  ( ( A  MH  B  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) ) ) )
8180com3r 75 . . . . 5  |-  ( ( A  MH  B  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( x  e. 
CH  ->  ( x  C_  B  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) ) ) )
82813impb 1152 . . . 4  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  (
x  e.  CH  ->  ( x  C_  B  ->  ( ( x  vH  ( C  vH  A ) )  i^i  B )  C_  ( x  vH  (
( C  vH  A
)  i^i  B )
) ) ) )
8382ralrimiv 2587 . . 3  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  A. x  e.  CH  ( x  C_  B  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) ) )
84 mdbr2 22706 . . . 4  |-  ( ( ( C  vH  A
)  e.  CH  /\  B  e.  CH )  ->  ( ( C  vH  A )  MH  B  <->  A. x  e.  CH  (
x  C_  B  ->  ( ( x  vH  ( C  vH  A ) )  i^i  B )  C_  ( x  vH  (
( C  vH  A
)  i^i  B )
) ) ) )
855, 16, 84mp2an 656 . . 3  |-  ( ( C  vH  A )  MH  B  <->  A. x  e.  CH  ( x  C_  B  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) ) )
8683, 85sylibr 205 . 2  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  ( C  vH  A )  MH  B )
871, 2chjcomi 21877 . . . . 5  |-  ( C  vH  A )  =  ( A  vH  C
)
88 incom 3269 . . . . . 6  |-  ( B  i^i  ( A  vH  B ) )  =  ( ( A  vH  B )  i^i  B
)
8918, 88, 193eqtr3ri 2282 . . . . 5  |-  B  =  ( ( A  vH  B )  i^i  B
)
9087, 89ineq12i 3276 . . . 4  |-  ( ( C  vH  A )  i^i  B )  =  ( ( A  vH  C )  i^i  (
( A  vH  B
)  i^i  B )
)
91 inass 3286 . . . . 5  |-  ( ( ( A  vH  C
)  i^i  ( A  vH  B ) )  i^i 
B )  =  ( ( A  vH  C
)  i^i  ( ( A  vH  B )  i^i 
B ) )
922, 16chub1i 21878 . . . . . . . 8  |-  A  C_  ( A  vH  B )
93 mdi 22705 . . . . . . . . . 10  |-  ( ( ( C  e.  CH  /\  ( A  vH  B
)  e.  CH  /\  A  e.  CH )  /\  ( C  MH  ( A  vH  B )  /\  A  C_  ( A  vH  B ) ) )  ->  ( ( A  vH  C )  i^i  ( A  vH  B
) )  =  ( A  vH  ( C  i^i  ( A  vH  B ) ) ) )
9493exp32 591 . . . . . . . . 9  |-  ( ( C  e.  CH  /\  ( A  vH  B )  e.  CH  /\  A  e.  CH )  ->  ( C  MH  ( A  vH  B )  ->  ( A  C_  ( A  vH  B )  ->  (
( A  vH  C
)  i^i  ( A  vH  B ) )  =  ( A  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
951, 29, 2, 94mp3an 1282 . . . . . . . 8  |-  ( C  MH  ( A  vH  B )  ->  ( A  C_  ( A  vH  B )  ->  (
( A  vH  C
)  i^i  ( A  vH  B ) )  =  ( A  vH  ( C  i^i  ( A  vH  B ) ) ) ) )
9692, 95mpi 18 . . . . . . 7  |-  ( C  MH  ( A  vH  B )  ->  (
( A  vH  C
)  i^i  ( A  vH  B ) )  =  ( A  vH  ( C  i^i  ( A  vH  B ) ) ) )
972, 38chjcomi 21877 . . . . . . . 8  |-  ( A  vH  ( C  i^i  ( A  vH  B ) ) )  =  ( ( C  i^i  ( A  vH  B ) )  vH  A )
9838, 2chlejb1i 21885 . . . . . . . . 9  |-  ( ( C  i^i  ( A  vH  B ) ) 
C_  A  <->  ( ( C  i^i  ( A  vH  B ) )  vH  A )  =  A )
9998biimpi 188 . . . . . . . 8  |-  ( ( C  i^i  ( A  vH  B ) ) 
C_  A  ->  (
( C  i^i  ( A  vH  B ) )  vH  A )  =  A )
10097, 99syl5eq 2297 . . . . . . 7  |-  ( ( C  i^i  ( A  vH  B ) ) 
C_  A  ->  ( A  vH  ( C  i^i  ( A  vH  B ) ) )  =  A )
10196, 100sylan9eq 2305 . . . . . 6  |-  ( ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( A  vH  C )  i^i  ( A  vH  B ) )  =  A )
102101ineq1d 3277 . . . . 5  |-  ( ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( ( A  vH  C )  i^i  ( A  vH  B
) )  i^i  B
)  =  ( A  i^i  B ) )
10391, 102syl5eqr 2299 . . . 4  |-  ( ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( A  vH  C )  i^i  (
( A  vH  B
)  i^i  B )
)  =  ( A  i^i  B ) )
10490, 103syl5eq 2297 . . 3  |-  ( ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( C  vH  A )  i^i  B
)  =  ( A  i^i  B ) )
1051043adant1 978 . 2  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  (
( C  vH  A
)  i^i  B )  =  ( A  i^i  B ) )
10686, 105jca 520 1  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  (
( C  vH  A
)  MH  B  /\  ( ( C  vH  A )  i^i  B
)  =  ( A  i^i  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2509    i^i cin 3077    C_ wss 3078   class class class wbr 3920  (class class class)co 5710   CHcch 21339    vH chj 21343    MH cmd 21376
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cc 7945  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697  ax-hilex 21409  ax-hfvadd 21410  ax-hvcom 21411  ax-hvass 21412  ax-hv0cl 21413  ax-hvaddid 21414  ax-hfvmul 21415  ax-hvmulid 21416  ax-hvmulass 21417  ax-hvdistr1 21418  ax-hvdistr2 21419  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his2 21492  ax-his3 21493  ax-his4 21494  ax-hcompl 21611
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-omul 6370  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-acn 7459  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-rlim 11840  df-sum 12036  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-cn 16789  df-cnp 16790  df-lm 16791  df-haus 16875  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cfil 18513  df-cau 18514  df-cmet 18515  df-grpo 20688  df-gid 20689  df-ginv 20690  df-gdiv 20691  df-ablo 20779  df-subgo 20799  df-vc 20932  df-nv 20978  df-va 20981  df-ba 20982  df-sm 20983  df-0v 20984  df-vs 20985  df-nmcv 20986  df-ims 20987  df-dip 21104  df-ssp 21128  df-ph 21221  df-cbn 21272  df-hnorm 21378  df-hba 21379  df-hvsub 21381  df-hlim 21382  df-hcau 21383  df-sh 21616  df-ch 21631  df-oc 21661  df-ch0 21662  df-shs 21717  df-chj 21719  df-md 22690
  Copyright terms: Public domain W3C validator