HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdexchi Structured version   Unicode version

Theorem mdexchi 27370
Description: An exchange lemma for modular pairs. Lemma 1.6 of [MaedaMaeda] p. 2. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdexch.1  |-  A  e. 
CH
mdexch.2  |-  B  e. 
CH
mdexch.3  |-  C  e. 
CH
Assertion
Ref Expression
mdexchi  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  (
( C  vH  A
)  MH  B  /\  ( ( C  vH  A )  i^i  B
)  =  ( A  i^i  B ) ) )

Proof of Theorem mdexchi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mdexch.3 . . . . . . . . . . . . . . 15  |-  C  e. 
CH
2 mdexch.1 . . . . . . . . . . . . . . 15  |-  A  e. 
CH
3 chjass 26568 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  CH  /\  A  e.  CH  /\  x  e.  CH )  ->  (
( C  vH  A
)  vH  x )  =  ( C  vH  ( A  vH  x
) ) )
41, 2, 3mp3an12 1312 . . . . . . . . . . . . . 14  |-  ( x  e.  CH  ->  (
( C  vH  A
)  vH  x )  =  ( C  vH  ( A  vH  x
) ) )
51, 2chjcli 26492 . . . . . . . . . . . . . . 15  |-  ( C  vH  A )  e. 
CH
6 chjcom 26541 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CH  /\  ( C  vH  A )  e.  CH )  -> 
( x  vH  ( C  vH  A ) )  =  ( ( C  vH  A )  vH  x ) )
75, 6mpan2 669 . . . . . . . . . . . . . 14  |-  ( x  e.  CH  ->  (
x  vH  ( C  vH  A ) )  =  ( ( C  vH  A )  vH  x
) )
8 chjcl 26392 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( A  vH  x
)  e.  CH )
92, 8mpan 668 . . . . . . . . . . . . . . 15  |-  ( x  e.  CH  ->  ( A  vH  x )  e. 
CH )
10 chjcom 26541 . . . . . . . . . . . . . . 15  |-  ( ( ( A  vH  x
)  e.  CH  /\  C  e.  CH )  ->  ( ( A  vH  x )  vH  C
)  =  ( C  vH  ( A  vH  x ) ) )
119, 1, 10sylancl 660 . . . . . . . . . . . . . 14  |-  ( x  e.  CH  ->  (
( A  vH  x
)  vH  C )  =  ( C  vH  ( A  vH  x
) ) )
124, 7, 113eqtr4d 2433 . . . . . . . . . . . . 13  |-  ( x  e.  CH  ->  (
x  vH  ( C  vH  A ) )  =  ( ( A  vH  x )  vH  C
) )
1312ineq1d 3613 . . . . . . . . . . . 12  |-  ( x  e.  CH  ->  (
( x  vH  ( C  vH  A ) )  i^i  B )  =  ( ( ( A  vH  x )  vH  C )  i^i  B
) )
14 inass 3622 . . . . . . . . . . . . 13  |-  ( ( ( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  i^i 
B )  =  ( ( ( A  vH  x )  vH  C
)  i^i  ( ( A  vH  B )  i^i 
B ) )
15 incom 3605 . . . . . . . . . . . . . . 15  |-  ( ( A  vH  B )  i^i  B )  =  ( B  i^i  ( A  vH  B ) )
16 mdexch.2 . . . . . . . . . . . . . . . . . 18  |-  B  e. 
CH
172, 16chjcomi 26503 . . . . . . . . . . . . . . . . 17  |-  ( A  vH  B )  =  ( B  vH  A
)
1817ineq2i 3611 . . . . . . . . . . . . . . . 16  |-  ( B  i^i  ( A  vH  B ) )  =  ( B  i^i  ( B  vH  A ) )
1916, 2chabs2i 26554 . . . . . . . . . . . . . . . 16  |-  ( B  i^i  ( B  vH  A ) )  =  B
2018, 19eqtri 2411 . . . . . . . . . . . . . . 15  |-  ( B  i^i  ( A  vH  B ) )  =  B
2115, 20eqtri 2411 . . . . . . . . . . . . . 14  |-  ( ( A  vH  B )  i^i  B )  =  B
2221ineq2i 3611 . . . . . . . . . . . . 13  |-  ( ( ( A  vH  x
)  vH  C )  i^i  ( ( A  vH  B )  i^i  B
) )  =  ( ( ( A  vH  x )  vH  C
)  i^i  B )
2314, 22eqtri 2411 . . . . . . . . . . . 12  |-  ( ( ( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  i^i 
B )  =  ( ( ( A  vH  x )  vH  C
)  i^i  B )
2413, 23syl6eqr 2441 . . . . . . . . . . 11  |-  ( x  e.  CH  ->  (
( x  vH  ( C  vH  A ) )  i^i  B )  =  ( ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B
) )  i^i  B
) )
2524ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  =  ( ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B ) )  i^i  B ) )
26 chlej2 26546 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  CH  /\  B  e.  CH  /\  A  e.  CH )  /\  x  C_  B )  ->  ( A  vH  x )  C_  ( A  vH  B ) )
2726ex 432 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CH  /\  B  e.  CH  /\  A  e.  CH )  ->  (
x  C_  B  ->  ( A  vH  x ) 
C_  ( A  vH  B ) ) )
2816, 2, 27mp3an23 1314 . . . . . . . . . . . . . . 15  |-  ( x  e.  CH  ->  (
x  C_  B  ->  ( A  vH  x ) 
C_  ( A  vH  B ) ) )
292, 16chjcli 26492 . . . . . . . . . . . . . . . . . 18  |-  ( A  vH  B )  e. 
CH
30 mdi 27330 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( C  e.  CH  /\  ( A  vH  B
)  e.  CH  /\  ( A  vH  x
)  e.  CH )  /\  ( C  MH  ( A  vH  B )  /\  ( A  vH  x
)  C_  ( A  vH  B ) ) )  ->  ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B
) )  =  ( ( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) ) )
3130exp32 603 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  CH  /\  ( A  vH  B )  e.  CH  /\  ( A  vH  x )  e. 
CH )  ->  ( C  MH  ( A  vH  B )  ->  (
( A  vH  x
)  C_  ( A  vH  B )  ->  (
( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  =  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
321, 29, 31mp3an12 1312 . . . . . . . . . . . . . . . . 17  |-  ( ( A  vH  x )  e.  CH  ->  ( C  MH  ( A  vH  B )  ->  (
( A  vH  x
)  C_  ( A  vH  B )  ->  (
( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  =  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
339, 32syl 16 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CH  ->  ( C  MH  ( A  vH  B )  ->  (
( A  vH  x
)  C_  ( A  vH  B )  ->  (
( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  =  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
3433com23 78 . . . . . . . . . . . . . . 15  |-  ( x  e.  CH  ->  (
( A  vH  x
)  C_  ( A  vH  B )  ->  ( C  MH  ( A  vH  B )  ->  (
( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  =  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
3528, 34syld 44 . . . . . . . . . . . . . 14  |-  ( x  e.  CH  ->  (
x  C_  B  ->  ( C  MH  ( A  vH  B )  -> 
( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B ) )  =  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
3635imp31 430 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  C  MH  ( A  vH  B ) )  ->  ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B
) )  =  ( ( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) ) )
3736adantrr 714 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B
) )  =  ( ( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) ) )
381, 29chincli 26495 . . . . . . . . . . . . . . . . 17  |-  ( C  i^i  ( A  vH  B ) )  e. 
CH
39 chlej2 26546 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  i^i  ( A  vH  B ) )  e.  CH  /\  A  e.  CH  /\  ( A  vH  x )  e. 
CH )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  (
( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) )  C_  ( ( A  vH  x )  vH  A
) )
4039ex 432 . . . . . . . . . . . . . . . . 17  |-  ( ( ( C  i^i  ( A  vH  B ) )  e.  CH  /\  A  e.  CH  /\  ( A  vH  x )  e. 
CH )  ->  (
( C  i^i  ( A  vH  B ) ) 
C_  A  ->  (
( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) )  C_  ( ( A  vH  x )  vH  A
) ) )
4138, 2, 40mp3an12 1312 . . . . . . . . . . . . . . . 16  |-  ( ( A  vH  x )  e.  CH  ->  (
( C  i^i  ( A  vH  B ) ) 
C_  A  ->  (
( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) )  C_  ( ( A  vH  x )  vH  A
) ) )
429, 41syl 16 . . . . . . . . . . . . . . 15  |-  ( x  e.  CH  ->  (
( C  i^i  ( A  vH  B ) ) 
C_  A  ->  (
( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) )  C_  ( ( A  vH  x )  vH  A
) ) )
4342imp 427 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CH  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) 
C_  ( ( A  vH  x )  vH  A ) )
44 chjcom 26541 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  vH  x
)  e.  CH  /\  A  e.  CH )  ->  ( ( A  vH  x )  vH  A
)  =  ( A  vH  ( A  vH  x ) ) )
459, 2, 44sylancl 660 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CH  ->  (
( A  vH  x
)  vH  A )  =  ( A  vH  ( A  vH  x
) ) )
462chjidmi 26556 . . . . . . . . . . . . . . . . . 18  |-  ( A  vH  A )  =  A
4746oveq1i 6206 . . . . . . . . . . . . . . . . 17  |-  ( ( A  vH  A )  vH  x )  =  ( A  vH  x
)
48 chjass 26568 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CH  /\  A  e.  CH  /\  x  e.  CH )  ->  (
( A  vH  A
)  vH  x )  =  ( A  vH  ( A  vH  x
) ) )
492, 2, 48mp3an12 1312 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CH  ->  (
( A  vH  A
)  vH  x )  =  ( A  vH  ( A  vH  x
) ) )
50 chjcom 26541 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( A  vH  x
)  =  ( x  vH  A ) )
512, 50mpan 668 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CH  ->  ( A  vH  x )  =  ( x  vH  A
) )
5247, 49, 513eqtr3a 2447 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CH  ->  ( A  vH  ( A  vH  x ) )  =  ( x  vH  A
) )
5345, 52eqtrd 2423 . . . . . . . . . . . . . . 15  |-  ( x  e.  CH  ->  (
( A  vH  x
)  vH  A )  =  ( x  vH  A ) )
5453adantr 463 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CH  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( A  vH  x )  vH  A
)  =  ( x  vH  A ) )
5543, 54sseqtrd 3453 . . . . . . . . . . . . 13  |-  ( ( x  e.  CH  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) 
C_  ( x  vH  A ) )
5655ad2ant2rl 746 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) )  C_  ( x  vH  A ) )
5737, 56eqsstrd 3451 . . . . . . . . . . 11  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B
) )  C_  (
x  vH  A )
)
58 ssrin 3637 . . . . . . . . . . 11  |-  ( ( ( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  C_  ( x  vH  A )  ->  ( ( ( ( A  vH  x
)  vH  C )  i^i  ( A  vH  B
) )  i^i  B
)  C_  ( (
x  vH  A )  i^i  B ) )
5957, 58syl 16 . . . . . . . . . 10  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( ( ( A  vH  x
)  vH  C )  i^i  ( A  vH  B
) )  i^i  B
)  C_  ( (
x  vH  A )  i^i  B ) )
6025, 59eqsstrd 3451 . . . . . . . . 9  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
( x  vH  A
)  i^i  B )
)
6160adantrl 713 . . . . . . . 8  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( A  MH  B  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) ) )  ->  ( (
x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
( x  vH  A
)  i^i  B )
)
62 mdi 27330 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  x  e.  CH )  /\  ( A  MH  B  /\  x  C_  B ) )  ->  ( (
x  vH  A )  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) )
6362exp32 603 . . . . . . . . . . . . 13  |-  ( ( A  e.  CH  /\  B  e.  CH  /\  x  e.  CH )  ->  ( A  MH  B  ->  ( x  C_  B  ->  ( ( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) ) )
642, 16, 63mp3an12 1312 . . . . . . . . . . . 12  |-  ( x  e.  CH  ->  ( A  MH  B  ->  ( x  C_  B  ->  ( ( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) ) )
6564com23 78 . . . . . . . . . . 11  |-  ( x  e.  CH  ->  (
x  C_  B  ->  ( A  MH  B  -> 
( ( x  vH  A )  i^i  B
)  =  ( x  vH  ( A  i^i  B ) ) ) ) )
6665imp31 430 . . . . . . . . . 10  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  A  MH  B
)  ->  ( (
x  vH  A )  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) )
672, 1chub2i 26505 . . . . . . . . . . . . 13  |-  A  C_  ( C  vH  A )
68 ssrin 3637 . . . . . . . . . . . . 13  |-  ( A 
C_  ( C  vH  A )  ->  ( A  i^i  B )  C_  ( ( C  vH  A )  i^i  B
) )
6967, 68ax-mp 5 . . . . . . . . . . . 12  |-  ( A  i^i  B )  C_  ( ( C  vH  A )  i^i  B
)
702, 16chincli 26495 . . . . . . . . . . . . 13  |-  ( A  i^i  B )  e. 
CH
715, 16chincli 26495 . . . . . . . . . . . . 13  |-  ( ( C  vH  A )  i^i  B )  e. 
CH
72 chlej2 26546 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  i^i  B )  e.  CH  /\  ( ( C  vH  A )  i^i  B
)  e.  CH  /\  x  e.  CH )  /\  ( A  i^i  B
)  C_  ( ( C  vH  A )  i^i 
B ) )  -> 
( x  vH  ( A  i^i  B ) ) 
C_  ( x  vH  ( ( C  vH  A )  i^i  B
) ) )
7372ex 432 . . . . . . . . . . . . 13  |-  ( ( ( A  i^i  B
)  e.  CH  /\  ( ( C  vH  A )  i^i  B
)  e.  CH  /\  x  e.  CH )  ->  ( ( A  i^i  B )  C_  ( ( C  vH  A )  i^i 
B )  ->  (
x  vH  ( A  i^i  B ) )  C_  ( x  vH  (
( C  vH  A
)  i^i  B )
) ) )
7470, 71, 73mp3an12 1312 . . . . . . . . . . . 12  |-  ( x  e.  CH  ->  (
( A  i^i  B
)  C_  ( ( C  vH  A )  i^i 
B )  ->  (
x  vH  ( A  i^i  B ) )  C_  ( x  vH  (
( C  vH  A
)  i^i  B )
) ) )
7569, 74mpi 17 . . . . . . . . . . 11  |-  ( x  e.  CH  ->  (
x  vH  ( A  i^i  B ) )  C_  ( x  vH  (
( C  vH  A
)  i^i  B )
) )
7675ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  A  MH  B
)  ->  ( x  vH  ( A  i^i  B
) )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) )
7766, 76eqsstrd 3451 . . . . . . . . 9  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  A  MH  B
)  ->  ( (
x  vH  A )  i^i  B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) )
7877adantrr 714 . . . . . . . 8  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( A  MH  B  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) ) )  ->  ( (
x  vH  A )  i^i  B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) )
7961, 78sstrd 3427 . . . . . . 7  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( A  MH  B  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) ) )  ->  ( (
x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) )
8079exp31 602 . . . . . 6  |-  ( x  e.  CH  ->  (
x  C_  B  ->  ( ( A  MH  B  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) ) ) )
8180com3r 79 . . . . 5  |-  ( ( A  MH  B  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( x  e. 
CH  ->  ( x  C_  B  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) ) ) )
82813impb 1190 . . . 4  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  (
x  e.  CH  ->  ( x  C_  B  ->  ( ( x  vH  ( C  vH  A ) )  i^i  B )  C_  ( x  vH  (
( C  vH  A
)  i^i  B )
) ) ) )
8382ralrimiv 2794 . . 3  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  A. x  e.  CH  ( x  C_  B  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) ) )
84 mdbr2 27331 . . . 4  |-  ( ( ( C  vH  A
)  e.  CH  /\  B  e.  CH )  ->  ( ( C  vH  A )  MH  B  <->  A. x  e.  CH  (
x  C_  B  ->  ( ( x  vH  ( C  vH  A ) )  i^i  B )  C_  ( x  vH  (
( C  vH  A
)  i^i  B )
) ) ) )
855, 16, 84mp2an 670 . . 3  |-  ( ( C  vH  A )  MH  B  <->  A. x  e.  CH  ( x  C_  B  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) ) )
8683, 85sylibr 212 . 2  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  ( C  vH  A )  MH  B )
871, 2chjcomi 26503 . . . . 5  |-  ( C  vH  A )  =  ( A  vH  C
)
88 incom 3605 . . . . . 6  |-  ( B  i^i  ( A  vH  B ) )  =  ( ( A  vH  B )  i^i  B
)
8918, 88, 193eqtr3ri 2420 . . . . 5  |-  B  =  ( ( A  vH  B )  i^i  B
)
9087, 89ineq12i 3612 . . . 4  |-  ( ( C  vH  A )  i^i  B )  =  ( ( A  vH  C )  i^i  (
( A  vH  B
)  i^i  B )
)
91 inass 3622 . . . . 5  |-  ( ( ( A  vH  C
)  i^i  ( A  vH  B ) )  i^i 
B )  =  ( ( A  vH  C
)  i^i  ( ( A  vH  B )  i^i 
B ) )
922, 16chub1i 26504 . . . . . . . 8  |-  A  C_  ( A  vH  B )
93 mdi 27330 . . . . . . . . . 10  |-  ( ( ( C  e.  CH  /\  ( A  vH  B
)  e.  CH  /\  A  e.  CH )  /\  ( C  MH  ( A  vH  B )  /\  A  C_  ( A  vH  B ) ) )  ->  ( ( A  vH  C )  i^i  ( A  vH  B
) )  =  ( A  vH  ( C  i^i  ( A  vH  B ) ) ) )
9493exp32 603 . . . . . . . . 9  |-  ( ( C  e.  CH  /\  ( A  vH  B )  e.  CH  /\  A  e.  CH )  ->  ( C  MH  ( A  vH  B )  ->  ( A  C_  ( A  vH  B )  ->  (
( A  vH  C
)  i^i  ( A  vH  B ) )  =  ( A  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
951, 29, 2, 94mp3an 1322 . . . . . . . 8  |-  ( C  MH  ( A  vH  B )  ->  ( A  C_  ( A  vH  B )  ->  (
( A  vH  C
)  i^i  ( A  vH  B ) )  =  ( A  vH  ( C  i^i  ( A  vH  B ) ) ) ) )
9692, 95mpi 17 . . . . . . 7  |-  ( C  MH  ( A  vH  B )  ->  (
( A  vH  C
)  i^i  ( A  vH  B ) )  =  ( A  vH  ( C  i^i  ( A  vH  B ) ) ) )
972, 38chjcomi 26503 . . . . . . . 8  |-  ( A  vH  ( C  i^i  ( A  vH  B ) ) )  =  ( ( C  i^i  ( A  vH  B ) )  vH  A )
9838, 2chlejb1i 26511 . . . . . . . . 9  |-  ( ( C  i^i  ( A  vH  B ) ) 
C_  A  <->  ( ( C  i^i  ( A  vH  B ) )  vH  A )  =  A )
9998biimpi 194 . . . . . . . 8  |-  ( ( C  i^i  ( A  vH  B ) ) 
C_  A  ->  (
( C  i^i  ( A  vH  B ) )  vH  A )  =  A )
10097, 99syl5eq 2435 . . . . . . 7  |-  ( ( C  i^i  ( A  vH  B ) ) 
C_  A  ->  ( A  vH  ( C  i^i  ( A  vH  B ) ) )  =  A )
10196, 100sylan9eq 2443 . . . . . 6  |-  ( ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( A  vH  C )  i^i  ( A  vH  B ) )  =  A )
102101ineq1d 3613 . . . . 5  |-  ( ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( ( A  vH  C )  i^i  ( A  vH  B
) )  i^i  B
)  =  ( A  i^i  B ) )
10391, 102syl5eqr 2437 . . . 4  |-  ( ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( A  vH  C )  i^i  (
( A  vH  B
)  i^i  B )
)  =  ( A  i^i  B ) )
10490, 103syl5eq 2435 . . 3  |-  ( ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( C  vH  A )  i^i  B
)  =  ( A  i^i  B ) )
1051043adant1 1012 . 2  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  (
( C  vH  A
)  i^i  B )  =  ( A  i^i  B ) )
10686, 105jca 530 1  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  (
( C  vH  A
)  MH  B  /\  ( ( C  vH  A )  i^i  B
)  =  ( A  i^i  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826   A.wral 2732    i^i cin 3388    C_ wss 3389   class class class wbr 4367  (class class class)co 6196   CHcch 25963    vH chj 25967    MH cmd 26000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cc 8728  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481  ax-addf 9482  ax-mulf 9483  ax-hilex 26033  ax-hfvadd 26034  ax-hvcom 26035  ax-hvass 26036  ax-hv0cl 26037  ax-hvaddid 26038  ax-hfvmul 26039  ax-hvmulid 26040  ax-hvmulass 26041  ax-hvdistr1 26042  ax-hvdistr2 26043  ax-hvmul0 26044  ax-hfi 26113  ax-his1 26116  ax-his2 26117  ax-his3 26118  ax-his4 26119  ax-hcompl 26236
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-of 6439  df-om 6600  df-1st 6699  df-2nd 6700  df-supp 6818  df-recs 6960  df-rdg 6994  df-1o 7048  df-2o 7049  df-oadd 7052  df-omul 7053  df-er 7229  df-map 7340  df-pm 7341  df-ixp 7389  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-fsupp 7745  df-fi 7786  df-sup 7816  df-oi 7850  df-card 8233  df-acn 8236  df-cda 8461  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-uz 11002  df-q 11102  df-rp 11140  df-xneg 11239  df-xadd 11240  df-xmul 11241  df-ioo 11454  df-ico 11456  df-icc 11457  df-fz 11594  df-fzo 11718  df-fl 11828  df-seq 12011  df-exp 12070  df-hash 12308  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-clim 13313  df-rlim 13314  df-sum 13511  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-mulr 14716  df-starv 14717  df-sca 14718  df-vsca 14719  df-ip 14720  df-tset 14721  df-ple 14722  df-ds 14724  df-unif 14725  df-hom 14726  df-cco 14727  df-rest 14830  df-topn 14831  df-0g 14849  df-gsum 14850  df-topgen 14851  df-pt 14852  df-prds 14855  df-xrs 14909  df-qtop 14914  df-imas 14915  df-xps 14917  df-mre 14993  df-mrc 14994  df-acs 14996  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-submnd 16084  df-mulg 16177  df-cntz 16472  df-cmn 16917  df-psmet 18524  df-xmet 18525  df-met 18526  df-bl 18527  df-mopn 18528  df-fbas 18529  df-fg 18530  df-cnfld 18534  df-top 19484  df-bases 19486  df-topon 19487  df-topsp 19488  df-cld 19605  df-ntr 19606  df-cls 19607  df-nei 19685  df-cn 19814  df-cnp 19815  df-lm 19816  df-haus 19902  df-tx 20148  df-hmeo 20341  df-fil 20432  df-fm 20524  df-flim 20525  df-flf 20526  df-xms 20908  df-ms 20909  df-tms 20910  df-cfil 21779  df-cau 21780  df-cmet 21781  df-grpo 25310  df-gid 25311  df-ginv 25312  df-gdiv 25313  df-ablo 25401  df-subgo 25421  df-vc 25556  df-nv 25602  df-va 25605  df-ba 25606  df-sm 25607  df-0v 25608  df-vs 25609  df-nmcv 25610  df-ims 25611  df-dip 25728  df-ssp 25752  df-ph 25845  df-cbn 25896  df-hnorm 26002  df-hba 26003  df-hvsub 26005  df-hlim 26006  df-hcau 26007  df-sh 26241  df-ch 26256  df-oc 26287  df-ch0 26288  df-shs 26343  df-chj 26345  df-md 27315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator