MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem2 Structured version   Unicode version

Theorem mdetunilem2 18394
Description: Lemma for mdetuni 18403. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a  |-  A  =  ( N Mat  R )
mdetuni.b  |-  B  =  ( Base `  A
)
mdetuni.k  |-  K  =  ( Base `  R
)
mdetuni.0g  |-  .0.  =  ( 0g `  R )
mdetuni.1r  |-  .1.  =  ( 1r `  R )
mdetuni.pg  |-  .+  =  ( +g  `  R )
mdetuni.tg  |-  .x.  =  ( .r `  R )
mdetuni.n  |-  ( ph  ->  N  e.  Fin )
mdetuni.r  |-  ( ph  ->  R  e.  Ring )
mdetuni.ff  |-  ( ph  ->  D : B --> K )
mdetuni.al  |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  ( y
x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )
mdetuni.li  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( ( D `  y
)  .+  ( D `  z ) ) ) )
mdetuni.sc  |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `
 z ) ) ) )
mdetunilem2.ph  |-  ( ps 
->  ph )
mdetunilem2.eg  |-  ( ps 
->  ( E  e.  N  /\  G  e.  N  /\  E  =/=  G
) )
mdetunilem2.f  |-  ( ( ps  /\  b  e.  N )  ->  F  e.  K )
mdetunilem2.h  |-  ( ( ps  /\  a  e.  N  /\  b  e.  N )  ->  H  e.  K )
Assertion
Ref Expression
mdetunilem2  |-  ( ps 
->  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) ) )  =  .0.  )
Distinct variable groups:    ph, x, y, z, w, a, b   
x, B, y, z, w, a, b    x, K, y, z, w, a, b    x, N, y, z, w, a, b   
x, D, y, z, w, a, b    x,  .x. , y, z, w    .+ , a,
b, x, y, z, w    .0. , a, b, x, y, z, w    .1. , a, b, x, y, z, w    x, R, y, z, w    A, a, b, x, y, z, w    x, E, y, z, w    x, F, y, z, w    x, G, y, z, w    x, H, y, z, w    ps, a, b, x, y, z, w    E, a, b    G, a, b    F, a
Allowed substitution hints:    R( a, b)    .x. ( a, b)    F( b)    H( a, b)

Proof of Theorem mdetunilem2
StepHypRef Expression
1 mdetunilem2.ph . 2  |-  ( ps 
->  ph )
2 mdetuni.a . . 3  |-  A  =  ( N Mat  R )
3 mdetuni.k . . 3  |-  K  =  ( Base `  R
)
4 mdetuni.b . . 3  |-  B  =  ( Base `  A
)
5 mdetuni.n . . . 4  |-  ( ph  ->  N  e.  Fin )
61, 5syl 16 . . 3  |-  ( ps 
->  N  e.  Fin )
7 mdetuni.r . . . 4  |-  ( ph  ->  R  e.  Ring )
81, 7syl 16 . . 3  |-  ( ps 
->  R  e.  Ring )
9 mdetunilem2.f . . . . 5  |-  ( ( ps  /\  b  e.  N )  ->  F  e.  K )
1093adant2 1007 . . . 4  |-  ( ( ps  /\  a  e.  N  /\  b  e.  N )  ->  F  e.  K )
11 mdetunilem2.h . . . . 5  |-  ( ( ps  /\  a  e.  N  /\  b  e.  N )  ->  H  e.  K )
1210, 11ifcld 3827 . . . 4  |-  ( ( ps  /\  a  e.  N  /\  b  e.  N )  ->  if ( a  =  G ,  F ,  H
)  e.  K )
1310, 12ifcld 3827 . . 3  |-  ( ( ps  /\  a  e.  N  /\  b  e.  N )  ->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) )  e.  K
)
142, 3, 4, 6, 8, 13matbas2d 18299 . 2  |-  ( ps 
->  ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) )  e.  B )
15 eqidd 2439 . . . . 5  |-  ( ( ps  /\  w  e.  N )  ->  (
a  e.  N , 
b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) )  =  ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) ) )
16 iftrue 3792 . . . . . . 7  |-  ( a  =  E  ->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) )  =  F )
17 csbeq1a 3292 . . . . . . 7  |-  ( b  =  w  ->  F  =  [_ w  /  b ]_ F )
1816, 17sylan9eq 2490 . . . . . 6  |-  ( ( a  =  E  /\  b  =  w )  ->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) )  =  [_ w  /  b ]_ F
)
1918adantl 466 . . . . 5  |-  ( ( ( ps  /\  w  e.  N )  /\  (
a  =  E  /\  b  =  w )
)  ->  if (
a  =  E ,  F ,  if (
a  =  G ,  F ,  H )
)  =  [_ w  /  b ]_ F
)
20 eqidd 2439 . . . . 5  |-  ( ( ( ps  /\  w  e.  N )  /\  a  =  E )  ->  N  =  N )
21 mdetunilem2.eg . . . . . . 7  |-  ( ps 
->  ( E  e.  N  /\  G  e.  N  /\  E  =/=  G
) )
2221simp1d 1000 . . . . . 6  |-  ( ps 
->  E  e.  N
)
2322adantr 465 . . . . 5  |-  ( ( ps  /\  w  e.  N )  ->  E  e.  N )
24 simpr 461 . . . . 5  |-  ( ( ps  /\  w  e.  N )  ->  w  e.  N )
25 nfv 1673 . . . . . . 7  |-  F/ b ( ps  /\  w  e.  N )
26 nfcsb1v 3299 . . . . . . . 8  |-  F/_ b [_ w  /  b ]_ F
2726nfel1 2584 . . . . . . 7  |-  F/ b
[_ w  /  b ]_ F  e.  K
2825, 27nfim 1852 . . . . . 6  |-  F/ b ( ( ps  /\  w  e.  N )  ->  [_ w  /  b ]_ F  e.  K
)
29 eleq1 2498 . . . . . . . 8  |-  ( b  =  w  ->  (
b  e.  N  <->  w  e.  N ) )
3029anbi2d 703 . . . . . . 7  |-  ( b  =  w  ->  (
( ps  /\  b  e.  N )  <->  ( ps  /\  w  e.  N ) ) )
3117eleq1d 2504 . . . . . . 7  |-  ( b  =  w  ->  ( F  e.  K  <->  [_ w  / 
b ]_ F  e.  K
) )
3230, 31imbi12d 320 . . . . . 6  |-  ( b  =  w  ->  (
( ( ps  /\  b  e.  N )  ->  F  e.  K )  <-> 
( ( ps  /\  w  e.  N )  ->  [_ w  /  b ]_ F  e.  K
) ) )
3328, 32, 9chvar 1957 . . . . 5  |-  ( ( ps  /\  w  e.  N )  ->  [_ w  /  b ]_ F  e.  K )
34 nfv 1673 . . . . 5  |-  F/ a ( ps  /\  w  e.  N )
35 nfcv 2574 . . . . 5  |-  F/_ b E
36 nfcv 2574 . . . . 5  |-  F/_ a
w
37 nfcv 2574 . . . . 5  |-  F/_ a [_ w  /  b ]_ F
3815, 19, 20, 23, 24, 33, 34, 25, 35, 36, 37, 26ovmpt2dxf 6211 . . . 4  |-  ( ( ps  /\  w  e.  N )  ->  ( E ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H ) ) ) w )  =  [_ w  /  b ]_ F
)
3921simp3d 1002 . . . . . . . . . . . . 13  |-  ( ps 
->  E  =/=  G
)
4039adantr 465 . . . . . . . . . . . 12  |-  ( ( ps  /\  w  e.  N )  ->  E  =/=  G )
41 neeq2 2612 . . . . . . . . . . . 12  |-  ( a  =  G  ->  ( E  =/=  a  <->  E  =/=  G ) )
4240, 41syl5ibrcom 222 . . . . . . . . . . 11  |-  ( ( ps  /\  w  e.  N )  ->  (
a  =  G  ->  E  =/=  a ) )
4342imp 429 . . . . . . . . . 10  |-  ( ( ( ps  /\  w  e.  N )  /\  a  =  G )  ->  E  =/=  a )
4443necomd 2690 . . . . . . . . 9  |-  ( ( ( ps  /\  w  e.  N )  /\  a  =  G )  ->  a  =/=  E )
4544neneqd 2619 . . . . . . . 8  |-  ( ( ( ps  /\  w  e.  N )  /\  a  =  G )  ->  -.  a  =  E )
4645adantrr 716 . . . . . . 7  |-  ( ( ( ps  /\  w  e.  N )  /\  (
a  =  G  /\  b  =  w )
)  ->  -.  a  =  E )
47 iffalse 3794 . . . . . . 7  |-  ( -.  a  =  E  ->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) )  =  if ( a  =  G ,  F ,  H
) )
4846, 47syl 16 . . . . . 6  |-  ( ( ( ps  /\  w  e.  N )  /\  (
a  =  G  /\  b  =  w )
)  ->  if (
a  =  E ,  F ,  if (
a  =  G ,  F ,  H )
)  =  if ( a  =  G ,  F ,  H )
)
49 iftrue 3792 . . . . . . . 8  |-  ( a  =  G  ->  if ( a  =  G ,  F ,  H
)  =  F )
5049, 17sylan9eq 2490 . . . . . . 7  |-  ( ( a  =  G  /\  b  =  w )  ->  if ( a  =  G ,  F ,  H )  =  [_ w  /  b ]_ F
)
5150adantl 466 . . . . . 6  |-  ( ( ( ps  /\  w  e.  N )  /\  (
a  =  G  /\  b  =  w )
)  ->  if (
a  =  G ,  F ,  H )  =  [_ w  /  b ]_ F )
5248, 51eqtrd 2470 . . . . 5  |-  ( ( ( ps  /\  w  e.  N )  /\  (
a  =  G  /\  b  =  w )
)  ->  if (
a  =  E ,  F ,  if (
a  =  G ,  F ,  H )
)  =  [_ w  /  b ]_ F
)
53 eqidd 2439 . . . . 5  |-  ( ( ( ps  /\  w  e.  N )  /\  a  =  G )  ->  N  =  N )
5421simp2d 1001 . . . . . 6  |-  ( ps 
->  G  e.  N
)
5554adantr 465 . . . . 5  |-  ( ( ps  /\  w  e.  N )  ->  G  e.  N )
56 nfcv 2574 . . . . 5  |-  F/_ b G
5715, 52, 53, 55, 24, 33, 34, 25, 56, 36, 37, 26ovmpt2dxf 6211 . . . 4  |-  ( ( ps  /\  w  e.  N )  ->  ( G ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H ) ) ) w )  =  [_ w  /  b ]_ F
)
5838, 57eqtr4d 2473 . . 3  |-  ( ( ps  /\  w  e.  N )  ->  ( E ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H ) ) ) w )  =  ( G ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H ) ) ) w ) )
5958ralrimiva 2794 . 2  |-  ( ps 
->  A. w  e.  N  ( E ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H ) ) ) w )  =  ( G ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H ) ) ) w ) )
60 mdetuni.0g . . 3  |-  .0.  =  ( 0g `  R )
61 mdetuni.1r . . 3  |-  .1.  =  ( 1r `  R )
62 mdetuni.pg . . 3  |-  .+  =  ( +g  `  R )
63 mdetuni.tg . . 3  |-  .x.  =  ( .r `  R )
64 mdetuni.ff . . 3  |-  ( ph  ->  D : B --> K )
65 mdetuni.al . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  ( y
x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )
66 mdetuni.li . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( ( D `  y
)  .+  ( D `  z ) ) ) )
67 mdetuni.sc . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `
 z ) ) ) )
682, 4, 3, 60, 61, 62, 63, 5, 7, 64, 65, 66, 67mdetunilem1 18393 . 2  |-  ( ( ( ph  /\  (
a  e.  N , 
b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) )  e.  B  /\  A. w  e.  N  ( E
( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) ) w )  =  ( G ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) ) w ) )  /\  ( E  e.  N  /\  G  e.  N  /\  E  =/=  G ) )  ->  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) ) )  =  .0.  )
691, 14, 59, 21, 68syl31anc 1221 1  |-  ( ps 
->  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  E ,  F ,  if ( a  =  G ,  F ,  H
) ) ) )  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   [_csb 3283    \ cdif 3320   ifcif 3786   {csn 3872    X. cxp 4833    |` cres 4837   -->wf 5409   ` cfv 5413  (class class class)co 6086    e. cmpt2 6088    oFcof 6313   Fincfn 7302   Basecbs 14166   +g cplusg 14230   .rcmulr 14231   0gc0g 14370   1rcur 16591   Ringcrg 16633   Mat cmat 18255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-ot 3881  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-map 7208  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-fz 11430  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-hom 14254  df-cco 14255  df-0g 14372  df-prds 14378  df-pws 14380  df-sra 17230  df-rgmod 17231  df-dsmm 18132  df-frlm 18147  df-mat 18257
This theorem is referenced by:  mdetunilem6  18398  mdetunilem8  18400
  Copyright terms: Public domain W3C validator