MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetuni Structured version   Unicode version

Theorem mdetuni 18991
Description: According to the definition in [Weierstrass] p. 272, the determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring. So for any multilinear (mdetuni.li and mdetuni.sc), alternating (mdetuni.al) and normalized (mdetuni.no) function D (mdetuni.ff) from the algebra of square matrices (mdetuni.a) to their underlying commutative ring (mdetuni.cr), the function value of this function D for a matrix F (mdetuni.f) is the determinant of this matrix. (Contributed by Stefan O'Rear, 15-Jul-2018.) (Revised by Alexander van der Vekens, 8-Feb-2019.)
Hypotheses
Ref Expression
mdetuni.a  |-  A  =  ( N Mat  R )
mdetuni.b  |-  B  =  ( Base `  A
)
mdetuni.k  |-  K  =  ( Base `  R
)
mdetuni.0g  |-  .0.  =  ( 0g `  R )
mdetuni.1r  |-  .1.  =  ( 1r `  R )
mdetuni.pg  |-  .+  =  ( +g  `  R )
mdetuni.tg  |-  .x.  =  ( .r `  R )
mdetuni.n  |-  ( ph  ->  N  e.  Fin )
mdetuni.r  |-  ( ph  ->  R  e.  Ring )
mdetuni.ff  |-  ( ph  ->  D : B --> K )
mdetuni.al  |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  ( y
x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )
mdetuni.li  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( ( D `  y
)  .+  ( D `  z ) ) ) )
mdetuni.sc  |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `
 z ) ) ) )
mdetuni.e  |-  E  =  ( N maDet  R )
mdetuni.cr  |-  ( ph  ->  R  e.  CRing )
mdetuni.f  |-  ( ph  ->  F  e.  B )
mdetuni.no  |-  ( ph  ->  ( D `  ( 1r `  A ) )  =  .1.  )
Assertion
Ref Expression
mdetuni  |-  ( ph  ->  ( D `  F
)  =  ( E `
 F ) )
Distinct variable groups:    ph, x, y, z, w    x, B, y, z, w    x, K, y, z, w    x, N, y, z, w    x, D, y, z, w    x,  .x. , y, z, w    x,  .+ , y, z, w    x,  .0. , y, z, w    x,  .1. , y, z, w    x, R, y, z, w    x, A, y, z, w    x, E, y, z, w    x, F, y, z, w

Proof of Theorem mdetuni
StepHypRef Expression
1 mdetuni.a . . 3  |-  A  =  ( N Mat  R )
2 mdetuni.b . . 3  |-  B  =  ( Base `  A
)
3 mdetuni.k . . 3  |-  K  =  ( Base `  R
)
4 mdetuni.0g . . 3  |-  .0.  =  ( 0g `  R )
5 mdetuni.1r . . 3  |-  .1.  =  ( 1r `  R )
6 mdetuni.pg . . 3  |-  .+  =  ( +g  `  R )
7 mdetuni.tg . . 3  |-  .x.  =  ( .r `  R )
8 mdetuni.n . . 3  |-  ( ph  ->  N  e.  Fin )
9 mdetuni.r . . 3  |-  ( ph  ->  R  e.  Ring )
10 mdetuni.ff . . 3  |-  ( ph  ->  D : B --> K )
11 mdetuni.al . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  ( y
x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )
12 mdetuni.li . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( ( D `  y
)  .+  ( D `  z ) ) ) )
13 mdetuni.sc . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `
 z ) ) ) )
14 mdetuni.e . . 3  |-  E  =  ( N maDet  R )
15 mdetuni.cr . . 3  |-  ( ph  ->  R  e.  CRing )
16 mdetuni.f . . 3  |-  ( ph  ->  F  e.  B )
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16mdetuni0 18990 . 2  |-  ( ph  ->  ( D `  F
)  =  ( ( D `  ( 1r
`  A ) ) 
.x.  ( E `  F ) ) )
18 mdetuni.no . . 3  |-  ( ph  ->  ( D `  ( 1r `  A ) )  =  .1.  )
1918oveq1d 6292 . 2  |-  ( ph  ->  ( ( D `  ( 1r `  A ) )  .x.  ( E `
 F ) )  =  (  .1.  .x.  ( E `  F ) ) )
2014, 1, 2, 3mdetcl 18965 . . . 4  |-  ( ( R  e.  CRing  /\  F  e.  B )  ->  ( E `  F )  e.  K )
2115, 16, 20syl2anc 661 . . 3  |-  ( ph  ->  ( E `  F
)  e.  K )
223, 7, 5ringlidm 17090 . . 3  |-  ( ( R  e.  Ring  /\  ( E `  F )  e.  K )  ->  (  .1.  .x.  ( E `  F ) )  =  ( E `  F
) )
239, 21, 22syl2anc 661 . 2  |-  ( ph  ->  (  .1.  .x.  ( E `  F )
)  =  ( E `
 F ) )
2417, 19, 233eqtrd 2486 1  |-  ( ph  ->  ( D `  F
)  =  ( E `
 F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   A.wral 2791    \ cdif 3455   {csn 4010    X. cxp 4983    |` cres 4987   -->wf 5570   ` cfv 5574  (class class class)co 6277    oFcof 6519   Fincfn 7514   Basecbs 14504   +g cplusg 14569   .rcmulr 14570   0gc0g 14709   1rcur 17021   Ringcrg 17066   CRingccrg 17067   Mat cmat 18776   maDet cmdat 18953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-inf2 8056  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-addf 9569  ax-mulf 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-xor 1363  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-ot 4019  df-uni 4231  df-int 4268  df-iun 4313  df-iin 4314  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6521  df-om 6682  df-1st 6781  df-2nd 6782  df-supp 6900  df-tpos 6953  df-recs 7040  df-rdg 7074  df-1o 7128  df-2o 7129  df-oadd 7132  df-er 7309  df-map 7420  df-pm 7421  df-ixp 7468  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-fsupp 7828  df-sup 7899  df-oi 7933  df-card 8318  df-cda 8546  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-7 10600  df-8 10601  df-9 10602  df-10 10603  df-n0 10797  df-z 10866  df-dec 10980  df-uz 11086  df-rp 11225  df-fz 11677  df-fzo 11799  df-seq 12082  df-exp 12141  df-hash 12380  df-word 12516  df-concat 12518  df-s1 12519  df-substr 12520  df-splice 12521  df-reverse 12522  df-s2 12787  df-struct 14506  df-ndx 14507  df-slot 14508  df-base 14509  df-sets 14510  df-ress 14511  df-plusg 14582  df-mulr 14583  df-starv 14584  df-sca 14585  df-vsca 14586  df-ip 14587  df-tset 14588  df-ple 14589  df-ds 14591  df-unif 14592  df-hom 14593  df-cco 14594  df-0g 14711  df-gsum 14712  df-prds 14717  df-pws 14719  df-mre 14855  df-mrc 14856  df-acs 14858  df-mgm 15741  df-sgrp 15780  df-mnd 15790  df-mhm 15835  df-submnd 15836  df-grp 15926  df-minusg 15927  df-sbg 15928  df-mulg 15929  df-subg 16067  df-ghm 16134  df-gim 16176  df-cntz 16224  df-oppg 16250  df-symg 16272  df-pmtr 16336  df-psgn 16385  df-evpm 16386  df-cmn 16669  df-abl 16670  df-mgp 17010  df-ur 17022  df-srg 17026  df-ring 17068  df-cring 17069  df-oppr 17140  df-dvdsr 17158  df-unit 17159  df-invr 17189  df-dvr 17200  df-rnghom 17232  df-drng 17266  df-subrg 17295  df-lmod 17382  df-lss 17447  df-sra 17686  df-rgmod 17687  df-cnfld 18289  df-zring 18357  df-zrh 18408  df-dsmm 18630  df-frlm 18645  df-mamu 18753  df-mat 18777  df-mdet 18954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator