MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetralt Structured version   Unicode version

Theorem mdetralt 18414
Description: The determinant function is alternating regarding rows: if a matrix has two identical rows, its determinant is 0. Corollary 4.9 in [Lang] p. 515. (Contributed by SO, 10-Jul-2018.) (Proof shortened by AV, 23-Jul-2018.)
Hypotheses
Ref Expression
mdetralt.d  |-  D  =  ( N maDet  R )
mdetralt.a  |-  A  =  ( N Mat  R )
mdetralt.b  |-  B  =  ( Base `  A
)
mdetralt.z  |-  .0.  =  ( 0g `  R )
mdetralt.r  |-  ( ph  ->  R  e.  CRing )
mdetralt.x  |-  ( ph  ->  X  e.  B )
mdetralt.i  |-  ( ph  ->  I  e.  N )
mdetralt.j  |-  ( ph  ->  J  e.  N )
mdetralt.ij  |-  ( ph  ->  I  =/=  J )
mdetralt.eq  |-  ( ph  ->  A. a  e.  N  ( I X a )  =  ( J X a ) )
Assertion
Ref Expression
mdetralt  |-  ( ph  ->  ( D `  X
)  =  .0.  )
Distinct variable groups:    I, a    J, a    N, a    X, a
Allowed substitution hints:    ph( a)    A( a)    B( a)    D( a)    R( a)    .0. ( a)

Proof of Theorem mdetralt
Dummy variables  c  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetralt.x . . 3  |-  ( ph  ->  X  e.  B )
2 mdetralt.d . . . 4  |-  D  =  ( N maDet  R )
3 mdetralt.a . . . 4  |-  A  =  ( N Mat  R )
4 mdetralt.b . . . 4  |-  B  =  ( Base `  A
)
5 eqid 2443 . . . 4  |-  ( Base `  ( SymGrp `  N )
)  =  ( Base `  ( SymGrp `  N )
)
6 eqid 2443 . . . 4  |-  ( ZRHom `  R )  =  ( ZRHom `  R )
7 eqid 2443 . . . 4  |-  (pmSgn `  N )  =  (pmSgn `  N )
8 eqid 2443 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
9 eqid 2443 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
102, 3, 4, 5, 6, 7, 8, 9mdetleib 18398 . . 3  |-  ( X  e.  B  ->  ( D `  X )  =  ( R  gsumg  ( p  e.  ( Base `  ( SymGrp `
 N ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )
( .r `  R
) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) ) )
111, 10syl 16 . 2  |-  ( ph  ->  ( D `  X
)  =  ( R 
gsumg  ( p  e.  ( Base `  ( SymGrp `  N
) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) ) ) ) )
12 eqid 2443 . . 3  |-  ( Base `  R )  =  (
Base `  R )
13 eqid 2443 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
14 mdetralt.r . . . . 5  |-  ( ph  ->  R  e.  CRing )
15 crngrng 16655 . . . . 5  |-  ( R  e.  CRing  ->  R  e.  Ring )
1614, 15syl 16 . . . 4  |-  ( ph  ->  R  e.  Ring )
17 rngcmn 16675 . . . 4  |-  ( R  e.  Ring  ->  R  e. CMnd
)
1816, 17syl 16 . . 3  |-  ( ph  ->  R  e. CMnd )
193, 4matrcl 18312 . . . . . 6  |-  ( X  e.  B  ->  ( N  e.  Fin  /\  R  e.  _V ) )
201, 19syl 16 . . . . 5  |-  ( ph  ->  ( N  e.  Fin  /\  R  e.  _V )
)
2120simpld 459 . . . 4  |-  ( ph  ->  N  e.  Fin )
22 eqid 2443 . . . . 5  |-  ( SymGrp `  N )  =  (
SymGrp `  N )
2322, 5symgbasfi 15891 . . . 4  |-  ( N  e.  Fin  ->  ( Base `  ( SymGrp `  N
) )  e.  Fin )
2421, 23syl 16 . . 3  |-  ( ph  ->  ( Base `  ( SymGrp `
 N ) )  e.  Fin )
2516adantr 465 . . . 4  |-  ( (
ph  /\  p  e.  ( Base `  ( SymGrp `  N ) ) )  ->  R  e.  Ring )
26 zrhpsgnmhm 18014 . . . . . . 7  |-  ( ( R  e.  Ring  /\  N  e.  Fin )  ->  (
( ZRHom `  R
)  o.  (pmSgn `  N ) )  e.  ( ( SymGrp `  N
) MndHom  (mulGrp `  R )
) )
2716, 21, 26syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ( ZRHom `  R )  o.  (pmSgn `  N ) )  e.  ( ( SymGrp `  N
) MndHom  (mulGrp `  R )
) )
289, 12mgpbas 16597 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  (mulGrp `  R
) )
295, 28mhmf 15469 . . . . . 6  |-  ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) )  e.  ( ( SymGrp `  N
) MndHom  (mulGrp `  R )
)  ->  ( ( ZRHom `  R )  o.  (pmSgn `  N )
) : ( Base `  ( SymGrp `  N )
) --> ( Base `  R
) )
3027, 29syl 16 . . . . 5  |-  ( ph  ->  ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) : ( Base `  ( SymGrp `
 N ) ) --> ( Base `  R
) )
3130ffvelrnda 5843 . . . 4  |-  ( (
ph  /\  p  e.  ( Base `  ( SymGrp `  N ) ) )  ->  ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )  e.  ( Base `  R
) )
329crngmgp 16653 . . . . . . 7  |-  ( R  e.  CRing  ->  (mulGrp `  R
)  e. CMnd )
3314, 32syl 16 . . . . . 6  |-  ( ph  ->  (mulGrp `  R )  e. CMnd )
3433adantr 465 . . . . 5  |-  ( (
ph  /\  p  e.  ( Base `  ( SymGrp `  N ) ) )  ->  (mulGrp `  R )  e. CMnd )
3521adantr 465 . . . . 5  |-  ( (
ph  /\  p  e.  ( Base `  ( SymGrp `  N ) ) )  ->  N  e.  Fin )
363, 12, 4matbas2i 18323 . . . . . . . . . 10  |-  ( X  e.  B  ->  X  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
371, 36syl 16 . . . . . . . . 9  |-  ( ph  ->  X  e.  ( (
Base `  R )  ^m  ( N  X.  N
) ) )
38 elmapi 7234 . . . . . . . . 9  |-  ( X  e.  ( ( Base `  R )  ^m  ( N  X.  N ) )  ->  X : ( N  X.  N ) --> ( Base `  R
) )
3937, 38syl 16 . . . . . . . 8  |-  ( ph  ->  X : ( N  X.  N ) --> (
Base `  R )
)
4039ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  ( Base `  ( SymGrp `
 N ) ) )  /\  c  e.  N )  ->  X : ( N  X.  N ) --> ( Base `  R ) )
4122, 5symgbasf1o 15888 . . . . . . . . . 10  |-  ( p  e.  ( Base `  ( SymGrp `
 N ) )  ->  p : N -1-1-onto-> N
)
4241adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  ( Base `  ( SymGrp `  N ) ) )  ->  p : N -1-1-onto-> N
)
43 f1of 5641 . . . . . . . . 9  |-  ( p : N -1-1-onto-> N  ->  p : N
--> N )
4442, 43syl 16 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( Base `  ( SymGrp `  N ) ) )  ->  p : N --> N )
4544ffvelrnda 5843 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  ( Base `  ( SymGrp `
 N ) ) )  /\  c  e.  N )  ->  (
p `  c )  e.  N )
46 simpr 461 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  ( Base `  ( SymGrp `
 N ) ) )  /\  c  e.  N )  ->  c  e.  N )
4740, 45, 46fovrnd 6235 . . . . . 6  |-  ( ( ( ph  /\  p  e.  ( Base `  ( SymGrp `
 N ) ) )  /\  c  e.  N )  ->  (
( p `  c
) X c )  e.  ( Base `  R
) )
4847ralrimiva 2799 . . . . 5  |-  ( (
ph  /\  p  e.  ( Base `  ( SymGrp `  N ) ) )  ->  A. c  e.  N  ( ( p `  c ) X c )  e.  ( Base `  R ) )
4928, 34, 35, 48gsummptcl 16458 . . . 4  |-  ( (
ph  /\  p  e.  ( Base `  ( SymGrp `  N ) ) )  ->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) )  e.  ( Base `  R
) )
5012, 8rngcl 16658 . . . 4  |-  ( ( R  e.  Ring  /\  (
( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p )  e.  (
Base `  R )  /\  ( (mulGrp `  R
)  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) )  e.  ( Base `  R
) )  ->  (
( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) )  e.  ( Base `  R
) )
5125, 31, 49, 50syl3anc 1218 . . 3  |-  ( (
ph  /\  p  e.  ( Base `  ( SymGrp `  N ) ) )  ->  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) )  e.  ( Base `  R
) )
52 disjdif 3751 . . . 4  |-  ( (pmEven `  N )  i^i  (
( Base `  ( SymGrp `  N ) )  \ 
(pmEven `  N )
) )  =  (/)
5352a1i 11 . . 3  |-  ( ph  ->  ( (pmEven `  N
)  i^i  ( ( Base `  ( SymGrp `  N
) )  \  (pmEven `  N ) ) )  =  (/) )
5422, 5evpmss 18016 . . . . . 6  |-  (pmEven `  N )  C_  ( Base `  ( SymGrp `  N
) )
55 undif 3759 . . . . . 6  |-  ( (pmEven `  N )  C_  ( Base `  ( SymGrp `  N
) )  <->  ( (pmEven `  N )  u.  (
( Base `  ( SymGrp `  N ) )  \ 
(pmEven `  N )
) )  =  (
Base `  ( SymGrp `  N ) ) )
5654, 55mpbi 208 . . . . 5  |-  ( (pmEven `  N )  u.  (
( Base `  ( SymGrp `  N ) )  \ 
(pmEven `  N )
) )  =  (
Base `  ( SymGrp `  N ) )
5756eqcomi 2447 . . . 4  |-  ( Base `  ( SymGrp `  N )
)  =  ( (pmEven `  N )  u.  (
( Base `  ( SymGrp `  N ) )  \ 
(pmEven `  N )
) )
5857a1i 11 . . 3  |-  ( ph  ->  ( Base `  ( SymGrp `
 N ) )  =  ( (pmEven `  N )  u.  (
( Base `  ( SymGrp `  N ) )  \ 
(pmEven `  N )
) ) )
59 eqid 2443 . . 3  |-  ( p  e.  ( Base `  ( SymGrp `
 N ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )
( .r `  R
) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )  =  ( p  e.  ( Base `  ( SymGrp `
 N ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )
( .r `  R
) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )
6012, 13, 18, 24, 51, 53, 58, 59gsummptfidmsplitres 16425 . 2  |-  ( ph  ->  ( R  gsumg  ( p  e.  (
Base `  ( SymGrp `  N ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) ) ) )  =  ( ( R  gsumg  ( ( p  e.  ( Base `  ( SymGrp `
 N ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )
( .r `  R
) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )  |`  (pmEven `  N
) ) ) ( +g  `  R ) ( R  gsumg  ( ( p  e.  ( Base `  ( SymGrp `
 N ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )
( .r `  R
) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )  |`  ( ( Base `  ( SymGrp `  N
) )  \  (pmEven `  N ) ) ) ) ) )
61 resmpt 5156 . . . . . . 7  |-  ( (pmEven `  N )  C_  ( Base `  ( SymGrp `  N
) )  ->  (
( p  e.  (
Base `  ( SymGrp `  N ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) ) )  |`  (pmEven `  N )
)  =  ( p  e.  (pmEven `  N
)  |->  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) ) ) )
6254, 61ax-mp 5 . . . . . 6  |-  ( ( p  e.  ( Base `  ( SymGrp `  N )
)  |->  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) ) )  |`  (pmEven `  N )
)  =  ( p  e.  (pmEven `  N
)  |->  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) ) )
6316adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  R  e.  Ring )
6421adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  N  e.  Fin )
65 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  p  e.  (pmEven `  N ) )
66 eqid 2443 . . . . . . . . . . 11  |-  ( 1r
`  R )  =  ( 1r `  R
)
676, 7, 66zrhpsgnevpm 18021 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  N  e.  Fin  /\  p  e.  (pmEven `  N )
)  ->  ( (
( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  p )  =  ( 1r `  R ) )
6863, 64, 65, 67syl3anc 1218 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )  =  ( 1r `  R ) )
6968oveq1d 6106 . . . . . . . 8  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) )  =  ( ( 1r `  R ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) ) )
7054sseli 3352 . . . . . . . . . 10  |-  ( p  e.  (pmEven `  N
)  ->  p  e.  ( Base `  ( SymGrp `  N ) ) )
7170, 49sylan2 474 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) )  e.  ( Base `  R
) )
7212, 8, 66rnglidm 16668 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
(mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) )  e.  (
Base `  R )
)  ->  ( ( 1r `  R ) ( .r `  R ) ( (mulGrp `  R
)  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) )  =  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) )
7363, 71, 72syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( ( 1r
`  R ) ( .r `  R ) ( (mulGrp `  R
)  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) )  =  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) )
7469, 73eqtrd 2475 . . . . . . 7  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) )  =  ( (mulGrp `  R
)  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) )
7574mpteq2dva 4378 . . . . . 6  |-  ( ph  ->  ( p  e.  (pmEven `  N )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) ) )  =  ( p  e.  (pmEven `  N )  |->  ( (mulGrp `  R
)  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )
7662, 75syl5eq 2487 . . . . 5  |-  ( ph  ->  ( ( p  e.  ( Base `  ( SymGrp `
 N ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )
( .r `  R
) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )  |`  (pmEven `  N
) )  =  ( p  e.  (pmEven `  N )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )
7776oveq2d 6107 . . . 4  |-  ( ph  ->  ( R  gsumg  ( ( p  e.  ( Base `  ( SymGrp `
 N ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )
( .r `  R
) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )  |`  (pmEven `  N
) ) )  =  ( R  gsumg  ( p  e.  (pmEven `  N )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) )
78 difss 3483 . . . . . . . 8  |-  ( (
Base `  ( SymGrp `  N ) )  \ 
(pmEven `  N )
)  C_  ( Base `  ( SymGrp `  N )
)
79 resmpt 5156 . . . . . . . 8  |-  ( ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  C_  ( Base `  ( SymGrp `  N
) )  ->  (
( p  e.  (
Base `  ( SymGrp `  N ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) ) )  |`  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )  =  ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) ) ) )
8078, 79ax-mp 5 . . . . . . 7  |-  ( ( p  e.  ( Base `  ( SymGrp `  N )
)  |->  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) ) )  |`  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )  =  ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) ) )
8116adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )  ->  R  e.  Ring )
8221adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )  ->  N  e.  Fin )
83 simpr 461 . . . . . . . . . . . 12  |-  ( (
ph  /\  p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )  ->  p  e.  ( ( Base `  ( SymGrp `  N
) )  \  (pmEven `  N ) ) )
84 eqid 2443 . . . . . . . . . . . . 13  |-  ( invg `  R )  =  ( invg `  R )
856, 7, 66, 5, 84zrhpsgnodpm 18022 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  N  e.  Fin  /\  p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )  -> 
( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p )  =  ( ( invg `  R ) `  ( 1r `  R ) ) )
8681, 82, 83, 85syl3anc 1218 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )  -> 
( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p )  =  ( ( invg `  R ) `  ( 1r `  R ) ) )
8786oveq1d 6106 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )  -> 
( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )
( .r `  R
) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) )  =  ( ( ( invg `  R
) `  ( 1r `  R ) ) ( .r `  R ) ( (mulGrp `  R
)  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )
88 eldifi 3478 . . . . . . . . . . . 12  |-  ( p  e.  ( ( Base `  ( SymGrp `  N )
)  \  (pmEven `  N
) )  ->  p  e.  ( Base `  ( SymGrp `
 N ) ) )
8988, 49sylan2 474 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )  -> 
( (mulGrp `  R
)  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) )  e.  ( Base `  R
) )
9012, 8, 66, 84, 81, 89rngnegl 16685 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )  -> 
( ( ( invg `  R ) `
 ( 1r `  R ) ) ( .r `  R ) ( (mulGrp `  R
)  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) )  =  ( ( invg `  R ) `
 ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )
9187, 90eqtrd 2475 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )  -> 
( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )
( .r `  R
) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) )  =  ( ( invg `  R ) `
 ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )
9291mpteq2dva 4378 . . . . . . . 8  |-  ( ph  ->  ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) ) )  =  ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( ( invg `  R
) `  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) )
93 eqidd 2444 . . . . . . . . 9  |-  ( ph  ->  ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) )  =  ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )
94 rnggrp 16650 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  R  e. 
Grp )
9516, 94syl 16 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  Grp )
9612, 84grpinvf 15582 . . . . . . . . . . 11  |-  ( R  e.  Grp  ->  ( invg `  R ) : ( Base `  R
) --> ( Base `  R
) )
9795, 96syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( invg `  R ) : (
Base `  R ) --> ( Base `  R )
)
9897feqmptd 5744 . . . . . . . . 9  |-  ( ph  ->  ( invg `  R )  =  ( q  e.  ( Base `  R )  |->  ( ( invg `  R
) `  q )
) )
99 fveq2 5691 . . . . . . . . 9  |-  ( q  =  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) )  -> 
( ( invg `  R ) `  q
)  =  ( ( invg `  R
) `  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )
10089, 93, 98, 99fmptco 5876 . . . . . . . 8  |-  ( ph  ->  ( ( invg `  R )  o.  (
p  e.  ( (
Base `  ( SymGrp `  N ) )  \ 
(pmEven `  N )
)  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )  =  ( p  e.  ( ( Base `  ( SymGrp `  N )
)  \  (pmEven `  N
) )  |->  ( ( invg `  R
) `  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) )
10192, 100eqtr4d 2478 . . . . . . 7  |-  ( ph  ->  ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) ) )  =  ( ( invg `  R )  o.  ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) )
10280, 101syl5eq 2487 . . . . . 6  |-  ( ph  ->  ( ( p  e.  ( Base `  ( SymGrp `
 N ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )
( .r `  R
) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )  |`  ( ( Base `  ( SymGrp `  N
) )  \  (pmEven `  N ) ) )  =  ( ( invg `  R )  o.  ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) )
103102oveq2d 6107 . . . . 5  |-  ( ph  ->  ( R  gsumg  ( ( p  e.  ( Base `  ( SymGrp `
 N ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )
( .r `  R
) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )  |`  ( ( Base `  ( SymGrp `  N
) )  \  (pmEven `  N ) ) ) )  =  ( R 
gsumg  ( ( invg `  R )  o.  (
p  e.  ( (
Base `  ( SymGrp `  N ) )  \ 
(pmEven `  N )
)  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) ) )
104 mdetralt.z . . . . . 6  |-  .0.  =  ( 0g `  R )
105 rngabl 16674 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Abel )
10616, 105syl 16 . . . . . 6  |-  ( ph  ->  R  e.  Abel )
107 difssd 3484 . . . . . . 7  |-  ( ph  ->  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  C_  ( Base `  ( SymGrp `  N
) ) )
108 ssfi 7533 . . . . . . 7  |-  ( ( ( Base `  ( SymGrp `
 N ) )  e.  Fin  /\  (
( Base `  ( SymGrp `  N ) )  \ 
(pmEven `  N )
)  C_  ( Base `  ( SymGrp `  N )
) )  ->  (
( Base `  ( SymGrp `  N ) )  \ 
(pmEven `  N )
)  e.  Fin )
10924, 107, 108syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  e.  Fin )
110 eqid 2443 . . . . . 6  |-  ( p  e.  ( ( Base `  ( SymGrp `  N )
)  \  (pmEven `  N
) )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) )  =  ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) )
11112, 104, 84, 106, 109, 89, 110gsummptfidminv 16445 . . . . 5  |-  ( ph  ->  ( R  gsumg  ( ( invg `  R )  o.  (
p  e.  ( (
Base `  ( SymGrp `  N ) )  \ 
(pmEven `  N )
)  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) )  =  ( ( invg `  R ) `  ( R  gsumg  ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) ) )
11289ralrimiva 2799 . . . . . . . 8  |-  ( ph  ->  A. p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) )  e.  ( Base `  R
) )
113 mdetralt.i . . . . . . . . . . . 12  |-  ( ph  ->  I  e.  N )
114 mdetralt.j . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  N )
115 prssi 4029 . . . . . . . . . . . 12  |-  ( ( I  e.  N  /\  J  e.  N )  ->  { I ,  J }  C_  N )
116113, 114, 115syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  { I ,  J }  C_  N )
117 mdetralt.ij . . . . . . . . . . . 12  |-  ( ph  ->  I  =/=  J )
118 pr2nelem 8171 . . . . . . . . . . . 12  |-  ( ( I  e.  N  /\  J  e.  N  /\  I  =/=  J )  ->  { I ,  J }  ~~  2o )
119113, 114, 117, 118syl3anc 1218 . . . . . . . . . . 11  |-  ( ph  ->  { I ,  J }  ~~  2o )
120 eqid 2443 . . . . . . . . . . . 12  |-  (pmTrsp `  N )  =  (pmTrsp `  N )
121 eqid 2443 . . . . . . . . . . . 12  |-  ran  (pmTrsp `  N )  =  ran  (pmTrsp `  N )
122120, 121pmtrrn 15963 . . . . . . . . . . 11  |-  ( ( N  e.  Fin  /\  { I ,  J }  C_  N  /\  { I ,  J }  ~~  2o )  ->  ( (pmTrsp `  N ) `  {
I ,  J }
)  e.  ran  (pmTrsp `  N ) )
12321, 116, 119, 122syl3anc 1218 . . . . . . . . . 10  |-  ( ph  ->  ( (pmTrsp `  N
) `  { I ,  J } )  e. 
ran  (pmTrsp `  N )
)
12422, 5, 121pmtrodpm 18027 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  ( (pmTrsp `  N ) `  { I ,  J } )  e.  ran  (pmTrsp `  N ) )  ->  ( (pmTrsp `  N ) `  {
I ,  J }
)  e.  ( (
Base `  ( SymGrp `  N ) )  \ 
(pmEven `  N )
) )
12521, 123, 124syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( (pmTrsp `  N
) `  { I ,  J } )  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )
12622, 5evpmodpmf1o 18026 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  ( (pmTrsp `  N ) `  { I ,  J } )  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )  -> 
( q  e.  (pmEven `  N )  |->  ( ( (pmTrsp `  N ) `  { I ,  J } ) ( +g  `  ( SymGrp `  N )
) q ) ) : (pmEven `  N
)
-1-1-onto-> ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )
12721, 125, 126syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( q  e.  (pmEven `  N )  |->  ( ( (pmTrsp `  N ) `  { I ,  J } ) ( +g  `  ( SymGrp `  N )
) q ) ) : (pmEven `  N
)
-1-1-onto-> ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )
12812, 18, 109, 112, 110, 127gsummptfif1o 16459 . . . . . . 7  |-  ( ph  ->  ( R  gsumg  ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )  =  ( R 
gsumg  ( ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) )  o.  ( q  e.  (pmEven `  N )  |->  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q ) ) ) ) )
129 eleq1 2503 . . . . . . . . . . . . 13  |-  ( p  =  q  ->  (
p  e.  (pmEven `  N )  <->  q  e.  (pmEven `  N ) ) )
130129anbi2d 703 . . . . . . . . . . . 12  |-  ( p  =  q  ->  (
( ph  /\  p  e.  (pmEven `  N )
)  <->  ( ph  /\  q  e.  (pmEven `  N
) ) ) )
131 oveq2 6099 . . . . . . . . . . . . 13  |-  ( p  =  q  ->  (
( (pmTrsp `  N
) `  { I ,  J } ) ( +g  `  ( SymGrp `  N ) ) p )  =  ( ( (pmTrsp `  N ) `  { I ,  J } ) ( +g  `  ( SymGrp `  N )
) q ) )
132131eleq1d 2509 . . . . . . . . . . . 12  |-  ( p  =  q  ->  (
( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) p )  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  <->  ( (
(pmTrsp `  N ) `  { I ,  J } ) ( +g  `  ( SymGrp `  N )
) q )  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) ) )
133130, 132imbi12d 320 . . . . . . . . . . 11  |-  ( p  =  q  ->  (
( ( ph  /\  p  e.  (pmEven `  N
) )  ->  (
( (pmTrsp `  N
) `  { I ,  J } ) ( +g  `  ( SymGrp `  N ) ) p )  e.  ( (
Base `  ( SymGrp `  N ) )  \ 
(pmEven `  N )
) )  <->  ( ( ph  /\  q  e.  (pmEven `  N ) )  -> 
( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q )  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) ) ) )
13422symggrp 15905 . . . . . . . . . . . . . . 15  |-  ( N  e.  Fin  ->  ( SymGrp `
 N )  e. 
Grp )
13521, 134syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( SymGrp `  N )  e.  Grp )
136135adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( SymGrp `  N
)  e.  Grp )
137121, 22, 5symgtrf 15975 . . . . . . . . . . . . . 14  |-  ran  (pmTrsp `  N )  C_  ( Base `  ( SymGrp `  N
) )
138123adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( (pmTrsp `  N ) `  {
I ,  J }
)  e.  ran  (pmTrsp `  N ) )
139137, 138sseldi 3354 . . . . . . . . . . . . 13  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( (pmTrsp `  N ) `  {
I ,  J }
)  e.  ( Base `  ( SymGrp `  N )
) )
14070adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  p  e.  (
Base `  ( SymGrp `  N ) ) )
141 eqid 2443 . . . . . . . . . . . . . 14  |-  ( +g  `  ( SymGrp `  N )
)  =  ( +g  `  ( SymGrp `  N )
)
1425, 141grpcl 15551 . . . . . . . . . . . . 13  |-  ( ( ( SymGrp `  N )  e.  Grp  /\  ( (pmTrsp `  N ) `  {
I ,  J }
)  e.  ( Base `  ( SymGrp `  N )
)  /\  p  e.  ( Base `  ( SymGrp `  N ) ) )  ->  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) p )  e.  (
Base `  ( SymGrp `  N ) ) )
143136, 139, 140, 142syl3anc 1218 . . . . . . . . . . . 12  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) p )  e.  (
Base `  ( SymGrp `  N ) ) )
144 eqid 2443 . . . . . . . . . . . . . . . . 17  |-  ( (mulGrp ` fld )s  { 1 ,  -u
1 } )  =  ( (mulGrp ` fld )s  { 1 ,  -u
1 } )
14522, 7, 144psgnghm2 18011 . . . . . . . . . . . . . . . 16  |-  ( N  e.  Fin  ->  (pmSgn `  N )  e.  ( ( SymGrp `  N )  GrpHom  ( (mulGrp ` fld )s  { 1 ,  -u
1 } ) ) )
14621, 145syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  (pmSgn `  N )  e.  ( ( SymGrp `  N
)  GrpHom  ( (mulGrp ` fld )s  {
1 ,  -u 1 } ) ) )
147146adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  (pmSgn `  N
)  e.  ( (
SymGrp `  N )  GrpHom  ( (mulGrp ` fld )s  { 1 ,  -u
1 } ) ) )
148 prex 4534 . . . . . . . . . . . . . . . 16  |-  { 1 ,  -u 1 }  e.  _V
149 eqid 2443 . . . . . . . . . . . . . . . . . 18  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
150 cnfldmul 17824 . . . . . . . . . . . . . . . . . 18  |-  x.  =  ( .r ` fld )
151149, 150mgpplusg 16595 . . . . . . . . . . . . . . . . 17  |-  x.  =  ( +g  `  (mulGrp ` fld )
)
152144, 151ressplusg 14280 . . . . . . . . . . . . . . . 16  |-  ( { 1 ,  -u 1 }  e.  _V  ->  x.  =  ( +g  `  (
(mulGrp ` fld )s  { 1 ,  -u
1 } ) ) )
153148, 152ax-mp 5 . . . . . . . . . . . . . . 15  |-  x.  =  ( +g  `  ( (mulGrp ` fld )s  { 1 ,  -u
1 } ) )
1545, 141, 153ghmlin 15752 . . . . . . . . . . . . . 14  |-  ( ( (pmSgn `  N )  e.  ( ( SymGrp `  N
)  GrpHom  ( (mulGrp ` fld )s  {
1 ,  -u 1 } ) )  /\  ( (pmTrsp `  N ) `  { I ,  J } )  e.  (
Base `  ( SymGrp `  N ) )  /\  p  e.  ( Base `  ( SymGrp `  N )
) )  ->  (
(pmSgn `  N ) `  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) p ) )  =  ( ( (pmSgn `  N ) `  (
(pmTrsp `  N ) `  { I ,  J } ) )  x.  ( (pmSgn `  N
) `  p )
) )
155147, 139, 140, 154syl3anc 1218 . . . . . . . . . . . . 13  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( (pmSgn `  N ) `  (
( (pmTrsp `  N
) `  { I ,  J } ) ( +g  `  ( SymGrp `  N ) ) p ) )  =  ( ( (pmSgn `  N
) `  ( (pmTrsp `  N ) `  {
I ,  J }
) )  x.  (
(pmSgn `  N ) `  p ) ) )
15622, 121, 7psgnpmtr 16016 . . . . . . . . . . . . . . . 16  |-  ( ( (pmTrsp `  N ) `  { I ,  J } )  e.  ran  (pmTrsp `  N )  -> 
( (pmSgn `  N
) `  ( (pmTrsp `  N ) `  {
I ,  J }
) )  =  -u
1 )
157138, 156syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( (pmSgn `  N ) `  (
(pmTrsp `  N ) `  { I ,  J } ) )  = 
-u 1 )
15822, 5, 7psgnevpm 18019 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  Fin  /\  p  e.  (pmEven `  N
) )  ->  (
(pmSgn `  N ) `  p )  =  1 )
15921, 158sylan 471 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( (pmSgn `  N ) `  p
)  =  1 )
160157, 159oveq12d 6109 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( ( (pmSgn `  N ) `  (
(pmTrsp `  N ) `  { I ,  J } ) )  x.  ( (pmSgn `  N
) `  p )
)  =  ( -u
1  x.  1 ) )
161 neg1cn 10425 . . . . . . . . . . . . . . 15  |-  -u 1  e.  CC
162161mulid1i 9388 . . . . . . . . . . . . . 14  |-  ( -u
1  x.  1 )  =  -u 1
163160, 162syl6eq 2491 . . . . . . . . . . . . 13  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( ( (pmSgn `  N ) `  (
(pmTrsp `  N ) `  { I ,  J } ) )  x.  ( (pmSgn `  N
) `  p )
)  =  -u 1
)
164155, 163eqtrd 2475 . . . . . . . . . . . 12  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( (pmSgn `  N ) `  (
( (pmTrsp `  N
) `  { I ,  J } ) ( +g  `  ( SymGrp `  N ) ) p ) )  =  -u
1 )
16522, 5, 7psgnodpmr 18020 . . . . . . . . . . . 12  |-  ( ( N  e.  Fin  /\  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) p )  e.  (
Base `  ( SymGrp `  N ) )  /\  ( (pmSgn `  N ) `  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) p ) )  = 
-u 1 )  -> 
( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) p )  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )
16664, 143, 164, 165syl3anc 1218 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) p )  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )
167133, 166chvarv 1958 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  (pmEven `  N ) )  ->  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q )  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) ) )
168 eqidd 2444 . . . . . . . . . 10  |-  ( ph  ->  ( q  e.  (pmEven `  N )  |->  ( ( (pmTrsp `  N ) `  { I ,  J } ) ( +g  `  ( SymGrp `  N )
) q ) )  =  ( q  e.  (pmEven `  N )  |->  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q ) ) )
169 fveq1 5690 . . . . . . . . . . . . 13  |-  ( p  =  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q )  ->  (
p `  c )  =  ( ( ( (pmTrsp `  N ) `  { I ,  J } ) ( +g  `  ( SymGrp `  N )
) q ) `  c ) )
170169oveq1d 6106 . . . . . . . . . . . 12  |-  ( p  =  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q )  ->  (
( p `  c
) X c )  =  ( ( ( ( (pmTrsp `  N
) `  { I ,  J } ) ( +g  `  ( SymGrp `  N ) ) q ) `  c ) X c ) )
171170mpteq2dv 4379 . . . . . . . . . . 11  |-  ( p  =  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q )  ->  (
c  e.  N  |->  ( ( p `  c
) X c ) )  =  ( c  e.  N  |->  ( ( ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q ) `  c
) X c ) ) )
172171oveq2d 6107 . . . . . . . . . 10  |-  ( p  =  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q )  ->  (
(mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) )  =  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q ) `  c
) X c ) ) ) )
173167, 168, 93, 172fmptco 5876 . . . . . . . . 9  |-  ( ph  ->  ( ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) )  o.  ( q  e.  (pmEven `  N )  |->  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q ) ) )  =  ( q  e.  (pmEven `  N )  |->  ( (mulGrp `  R
)  gsumg  ( c  e.  N  |->  ( ( ( ( (pmTrsp `  N ) `  { I ,  J } ) ( +g  `  ( SymGrp `  N )
) q ) `  c ) X c ) ) ) ) )
174 oveq2 6099 . . . . . . . . . . . . . . 15  |-  ( q  =  p  ->  (
( (pmTrsp `  N
) `  { I ,  J } ) ( +g  `  ( SymGrp `  N ) ) q )  =  ( ( (pmTrsp `  N ) `  { I ,  J } ) ( +g  `  ( SymGrp `  N )
) p ) )
175174fveq1d 5693 . . . . . . . . . . . . . 14  |-  ( q  =  p  ->  (
( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q ) `  c
)  =  ( ( ( (pmTrsp `  N
) `  { I ,  J } ) ( +g  `  ( SymGrp `  N ) ) p ) `  c ) )
176175oveq1d 6106 . . . . . . . . . . . . 13  |-  ( q  =  p  ->  (
( ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q ) `  c
) X c )  =  ( ( ( ( (pmTrsp `  N
) `  { I ,  J } ) ( +g  `  ( SymGrp `  N ) ) p ) `  c ) X c ) )
177176mpteq2dv 4379 . . . . . . . . . . . 12  |-  ( q  =  p  ->  (
c  e.  N  |->  ( ( ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q ) `  c
) X c ) )  =  ( c  e.  N  |->  ( ( ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) p ) `  c
) X c ) ) )
178177oveq2d 6107 . . . . . . . . . . 11  |-  ( q  =  p  ->  (
(mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q ) `  c
) X c ) ) )  =  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) p ) `  c
) X c ) ) ) )
179178cbvmptv 4383 . . . . . . . . . 10  |-  ( q  e.  (pmEven `  N
)  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( ( ( (pmTrsp `  N ) `  { I ,  J } ) ( +g  `  ( SymGrp `  N )
) q ) `  c ) X c ) ) ) )  =  ( p  e.  (pmEven `  N )  |->  ( (mulGrp `  R
)  gsumg  ( c  e.  N  |->  ( ( ( ( (pmTrsp `  N ) `  { I ,  J } ) ( +g  `  ( SymGrp `  N )
) p ) `  c ) X c ) ) ) )
180179a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( q  e.  (pmEven `  N )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( ( ( (pmTrsp `  N ) `  { I ,  J } ) ( +g  `  ( SymGrp `  N )
) q ) `  c ) X c ) ) ) )  =  ( p  e.  (pmEven `  N )  |->  ( (mulGrp `  R
)  gsumg  ( c  e.  N  |->  ( ( ( ( (pmTrsp `  N ) `  { I ,  J } ) ( +g  `  ( SymGrp `  N )
) p ) `  c ) X c ) ) ) ) )
181139adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
(pmTrsp `  N ) `  { I ,  J } )  e.  (
Base `  ( SymGrp `  N ) ) )
182140adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  p  e.  ( Base `  ( SymGrp `
 N ) ) )
18322, 5, 141symgov 15895 . . . . . . . . . . . . . . . . 17  |-  ( ( ( (pmTrsp `  N
) `  { I ,  J } )  e.  ( Base `  ( SymGrp `
 N ) )  /\  p  e.  (
Base `  ( SymGrp `  N ) ) )  ->  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) p )  =  ( ( (pmTrsp `  N
) `  { I ,  J } )  o.  p ) )
184181, 182, 183syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( (pmTrsp `  N
) `  { I ,  J } ) ( +g  `  ( SymGrp `  N ) ) p )  =  ( ( (pmTrsp `  N ) `  { I ,  J } )  o.  p
) )
185184fveq1d 5693 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) p ) `  c
)  =  ( ( ( (pmTrsp `  N
) `  { I ,  J } )  o.  p ) `  c
) )
18670, 44sylan2 474 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  p : N --> N )
187 fvco3 5768 . . . . . . . . . . . . . . . 16  |-  ( ( p : N --> N  /\  c  e.  N )  ->  ( ( ( (pmTrsp `  N ) `  {
I ,  J }
)  o.  p ) `
 c )  =  ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) ) )
188186, 187sylan 471 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( ( (pmTrsp `  N ) `  {
I ,  J }
)  o.  p ) `
 c )  =  ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) ) )
189185, 188eqtrd 2475 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) p ) `  c
)  =  ( ( (pmTrsp `  N ) `  { I ,  J } ) `  (
p `  c )
) )
190189oveq1d 6106 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) p ) `  c
) X c )  =  ( ( ( (pmTrsp `  N ) `  { I ,  J } ) `  (
p `  c )
) X c ) )
191120pmtrprfv 15959 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  Fin  /\  ( I  e.  N  /\  J  e.  N  /\  I  =/=  J
) )  ->  (
( (pmTrsp `  N
) `  { I ,  J } ) `  I )  =  J )
19221, 113, 114, 117, 191syl13anc 1220 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  I )  =  J )
193192ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( (pmTrsp `  N
) `  { I ,  J } ) `  I )  =  J )
194193oveq1d 6106 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( ( (pmTrsp `  N ) `  {
I ,  J }
) `  I ) X c )  =  ( J X c ) )
195 simpr 461 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  c  e.  N )
196 mdetralt.eq . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A. a  e.  N  ( I X a )  =  ( J X a ) )
197196ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  A. a  e.  N  ( I X a )  =  ( J X a ) )
198 oveq2 6099 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  c  ->  (
I X a )  =  ( I X c ) )
199 oveq2 6099 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  c  ->  ( J X a )  =  ( J X c ) )
200198, 199eqeq12d 2457 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  c  ->  (
( I X a )  =  ( J X a )  <->  ( I X c )  =  ( J X c ) ) )
201200rspcv 3069 . . . . . . . . . . . . . . . . 17  |-  ( c  e.  N  ->  ( A. a  e.  N  ( I X a )  =  ( J X a )  -> 
( I X c )  =  ( J X c ) ) )
202195, 197, 201sylc 60 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
I X c )  =  ( J X c ) )
203194, 202eqtr4d 2478 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( ( (pmTrsp `  N ) `  {
I ,  J }
) `  I ) X c )  =  ( I X c ) )
204 fveq2 5691 . . . . . . . . . . . . . . . . 17  |-  ( ( p `  c )  =  I  ->  (
( (pmTrsp `  N
) `  { I ,  J } ) `  ( p `  c
) )  =  ( ( (pmTrsp `  N
) `  { I ,  J } ) `  I ) )
205204oveq1d 6106 . . . . . . . . . . . . . . . 16  |-  ( ( p `  c )  =  I  ->  (
( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) ) X c )  =  ( ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  I ) X c ) )
206 oveq1 6098 . . . . . . . . . . . . . . . 16  |-  ( ( p `  c )  =  I  ->  (
( p `  c
) X c )  =  ( I X c ) )
207205, 206eqeq12d 2457 . . . . . . . . . . . . . . 15  |-  ( ( p `  c )  =  I  ->  (
( ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) ) X c )  =  ( ( p `  c
) X c )  <-> 
( ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  I ) X c )  =  ( I X c ) ) )
208203, 207syl5ibrcom 222 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( p `  c
)  =  I  -> 
( ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) ) X c )  =  ( ( p `  c
) X c ) ) )
209 prcom 3953 . . . . . . . . . . . . . . . . . . . . . . 23  |-  { I ,  J }  =  { J ,  I }
210209fveq2i 5694 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (pmTrsp `  N ) `  {
I ,  J }
)  =  ( (pmTrsp `  N ) `  { J ,  I }
)
211210fveq1i 5692 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( (pmTrsp `  N ) `  { I ,  J } ) `  J
)  =  ( ( (pmTrsp `  N ) `  { J ,  I } ) `  J
)
212117necomd 2695 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  J  =/=  I )
213120pmtrprfv 15959 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  e.  Fin  /\  ( J  e.  N  /\  I  e.  N  /\  J  =/=  I
) )  ->  (
( (pmTrsp `  N
) `  { J ,  I } ) `  J )  =  I )
21421, 114, 113, 212, 213syl13anc 1220 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( (pmTrsp `  N ) `  { J ,  I }
) `  J )  =  I )
215211, 214syl5eq 2487 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  J )  =  I )
216215oveq1d 6106 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  J ) X c )  =  ( I X c ) )
217216ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( ( (pmTrsp `  N ) `  {
I ,  J }
) `  J ) X c )  =  ( I X c ) )
218217, 202eqtrd 2475 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( ( (pmTrsp `  N ) `  {
I ,  J }
) `  J ) X c )  =  ( J X c ) )
219 fveq2 5691 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p `  c )  =  J  ->  (
( (pmTrsp `  N
) `  { I ,  J } ) `  ( p `  c
) )  =  ( ( (pmTrsp `  N
) `  { I ,  J } ) `  J ) )
220219oveq1d 6106 . . . . . . . . . . . . . . . . . 18  |-  ( ( p `  c )  =  J  ->  (
( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) ) X c )  =  ( ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  J ) X c ) )
221 oveq1 6098 . . . . . . . . . . . . . . . . . 18  |-  ( ( p `  c )  =  J  ->  (
( p `  c
) X c )  =  ( J X c ) )
222220, 221eqeq12d 2457 . . . . . . . . . . . . . . . . 17  |-  ( ( p `  c )  =  J  ->  (
( ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) ) X c )  =  ( ( p `  c
) X c )  <-> 
( ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  J ) X c )  =  ( J X c ) ) )
223218, 222syl5ibrcom 222 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( p `  c
)  =  J  -> 
( ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) ) X c )  =  ( ( p `  c
) X c ) ) )
224223a1dd 46 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( p `  c
)  =  J  -> 
( ( p `  c )  =/=  I  ->  ( ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) ) X c )  =  ( ( p `  c
) X c ) ) ) )
225 neanior 2697 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( p `  c
)  =/=  J  /\  ( p `  c
)  =/=  I )  <->  -.  ( ( p `  c )  =  J  \/  ( p `  c )  =  I ) )
226 elpri 3897 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( p `  c )  e.  { I ,  J }  ->  (
( p `  c
)  =  I  \/  ( p `  c
)  =  J ) )
227226orcomd 388 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( p `  c )  e.  { I ,  J }  ->  (
( p `  c
)  =  J  \/  ( p `  c
)  =  I ) )
228227con3i 135 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  ( ( p `  c )  =  J  \/  ( p `  c )  =  I )  ->  -.  (
p `  c )  e.  { I ,  J } )
229225, 228sylbi 195 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( p `  c
)  =/=  J  /\  ( p `  c
)  =/=  I )  ->  -.  ( p `  c )  e.  {
I ,  J }
)
2302293adant1 1006 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  p  e.  (pmEven `  N
) )  /\  c  e.  N )  /\  (
p `  c )  =/=  J  /\  ( p `
 c )  =/=  I )  ->  -.  ( p `  c
)  e.  { I ,  J } )
231120pmtrmvd 15962 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  e.  Fin  /\  { I ,  J }  C_  N  /\  { I ,  J }  ~~  2o )  ->  dom  ( (
(pmTrsp `  N ) `  { I ,  J } )  \  _I  )  =  { I ,  J } )
23221, 116, 119, 231syl3anc 1218 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  dom  ( ( (pmTrsp `  N ) `  {
I ,  J }
)  \  _I  )  =  { I ,  J } )
233232ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  dom  ( ( (pmTrsp `  N ) `  {
I ,  J }
)  \  _I  )  =  { I ,  J } )
2342333ad2ant1 1009 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  p  e.  (pmEven `  N
) )  /\  c  e.  N )  /\  (
p `  c )  =/=  J  /\  ( p `
 c )  =/=  I )  ->  dom  ( ( (pmTrsp `  N ) `  {
I ,  J }
)  \  _I  )  =  { I ,  J } )
235230, 234neleqtrrd 2539 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  p  e.  (pmEven `  N
) )  /\  c  e.  N )  /\  (
p `  c )  =/=  J  /\  ( p `
 c )  =/=  I )  ->  -.  ( p `  c
)  e.  dom  (
( (pmTrsp `  N
) `  { I ,  J } )  \  _I  ) )
236120pmtrf 15961 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  Fin  /\  { I ,  J }  C_  N  /\  { I ,  J }  ~~  2o )  ->  ( (pmTrsp `  N ) `  {
I ,  J }
) : N --> N )
23721, 116, 119, 236syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( (pmTrsp `  N
) `  { I ,  J } ) : N --> N )
238 ffn 5559 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (pmTrsp `  N ) `  { I ,  J } ) : N --> N  ->  ( (pmTrsp `  N ) `  {
I ,  J }
)  Fn  N )
239237, 238syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( (pmTrsp `  N
) `  { I ,  J } )  Fn  N )
240239ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
(pmTrsp `  N ) `  { I ,  J } )  Fn  N
)
241186ffvelrnda 5843 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
p `  c )  e.  N )
242 fnelnfp 5908 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (pmTrsp `  N
) `  { I ,  J } )  Fn  N  /\  ( p `
 c )  e.  N )  ->  (
( p `  c
)  e.  dom  (
( (pmTrsp `  N
) `  { I ,  J } )  \  _I  )  <->  ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) )  =/=  ( p `  c
) ) )
243240, 241, 242syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( p `  c
)  e.  dom  (
( (pmTrsp `  N
) `  { I ,  J } )  \  _I  )  <->  ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) )  =/=  ( p `  c
) ) )
2442433ad2ant1 1009 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  p  e.  (pmEven `  N
) )  /\  c  e.  N )  /\  (
p `  c )  =/=  J  /\  ( p `
 c )  =/=  I )  ->  (
( p `  c
)  e.  dom  (
( (pmTrsp `  N
) `  { I ,  J } )  \  _I  )  <->  ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) )  =/=  ( p `  c
) ) )
245244necon2bbid 2669 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  p  e.  (pmEven `  N
) )  /\  c  e.  N )  /\  (
p `  c )  =/=  J  /\  ( p `
 c )  =/=  I )  ->  (
( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) )  =  ( p `  c
)  <->  -.  ( p `  c )  e.  dom  ( ( (pmTrsp `  N ) `  {
I ,  J }
)  \  _I  )
) )
246235, 245mpbird 232 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  p  e.  (pmEven `  N
) )  /\  c  e.  N )  /\  (
p `  c )  =/=  J  /\  ( p `
 c )  =/=  I )  ->  (
( (pmTrsp `  N
) `  { I ,  J } ) `  ( p `  c
) )  =  ( p `  c ) )
247246oveq1d 6106 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  p  e.  (pmEven `  N
) )  /\  c  e.  N )  /\  (
p `  c )  =/=  J  /\  ( p `
 c )  =/=  I )  ->  (
( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) ) X c )  =  ( ( p `  c
) X c ) )
2482473exp 1186 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( p `  c
)  =/=  J  -> 
( ( p `  c )  =/=  I  ->  ( ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) ) X c )  =  ( ( p `  c
) X c ) ) ) )
249224, 248pm2.61dne 2688 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( p `  c
)  =/=  I  -> 
( ( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) ) X c )  =  ( ( p `  c
) X c ) ) )
250208, 249pm2.61dne 2688 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( ( (pmTrsp `  N ) `  {
I ,  J }
) `  ( p `  c ) ) X c )  =  ( ( p `  c
) X c ) )
251190, 250eqtrd 2475 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  (pmEven `  N )
)  /\  c  e.  N )  ->  (
( ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) p ) `  c
) X c )  =  ( ( p `
 c ) X c ) )
252251mpteq2dva 4378 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( c  e.  N  |->  ( ( ( ( (pmTrsp `  N
) `  { I ,  J } ) ( +g  `  ( SymGrp `  N ) ) p ) `  c ) X c ) )  =  ( c  e.  N  |->  ( ( p `
 c ) X c ) ) )
253252oveq2d 6107 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  (pmEven `  N ) )  ->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( ( ( (pmTrsp `  N ) `  { I ,  J } ) ( +g  `  ( SymGrp `  N )
) p ) `  c ) X c ) ) )  =  ( (mulGrp `  R
)  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) )
254253mpteq2dva 4378 . . . . . . . . 9  |-  ( ph  ->  ( p  e.  (pmEven `  N )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( ( ( (pmTrsp `  N ) `  { I ,  J } ) ( +g  `  ( SymGrp `  N )
) p ) `  c ) X c ) ) ) )  =  ( p  e.  (pmEven `  N )  |->  ( (mulGrp `  R
)  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )
255173, 180, 2543eqtrd 2479 . . . . . . . 8  |-  ( ph  ->  ( ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) )  o.  ( q  e.  (pmEven `  N )  |->  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q ) ) )  =  ( p  e.  (pmEven `  N )  |->  ( (mulGrp `  R
)  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )
256255oveq2d 6107 . . . . . . 7  |-  ( ph  ->  ( R  gsumg  ( ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) )  o.  ( q  e.  (pmEven `  N )  |->  ( ( (pmTrsp `  N ) `  {
I ,  J }
) ( +g  `  ( SymGrp `
 N ) ) q ) ) ) )  =  ( R 
gsumg  ( p  e.  (pmEven `  N )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) )
257128, 256eqtrd 2475 . . . . . 6  |-  ( ph  ->  ( R  gsumg  ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )  =  ( R 
gsumg  ( p  e.  (pmEven `  N )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) )
258257fveq2d 5695 . . . . 5  |-  ( ph  ->  ( ( invg `  R ) `  ( R  gsumg  ( p  e.  ( ( Base `  ( SymGrp `
 N ) ) 
\  (pmEven `  N
) )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) )  =  ( ( invg `  R ) `  ( R  gsumg  ( p  e.  (pmEven `  N )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) ) )
259103, 111, 2583eqtrd 2479 . . . 4  |-  ( ph  ->  ( R  gsumg  ( ( p  e.  ( Base `  ( SymGrp `
 N ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )
( .r `  R
) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )  |`  ( ( Base `  ( SymGrp `  N
) )  \  (pmEven `  N ) ) ) )  =  ( ( invg `  R
) `  ( R  gsumg  ( p  e.  (pmEven `  N )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) ) )
26077, 259oveq12d 6109 . . 3  |-  ( ph  ->  ( ( R  gsumg  ( ( p  e.  ( Base `  ( SymGrp `  N )
)  |->  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) ) )  |`  (pmEven `  N )
) ) ( +g  `  R ) ( R 
gsumg  ( ( p  e.  ( Base `  ( SymGrp `
 N ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )
( .r `  R
) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )  |`  ( ( Base `  ( SymGrp `  N
) )  \  (pmEven `  N ) ) ) ) )  =  ( ( R  gsumg  ( p  e.  (pmEven `  N )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) ( +g  `  R
) ( ( invg `  R ) `
 ( R  gsumg  ( p  e.  (pmEven `  N
)  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) ) ) )
26154a1i 11 . . . . . 6  |-  ( ph  ->  (pmEven `  N )  C_  ( Base `  ( SymGrp `
 N ) ) )
262 ssfi 7533 . . . . . 6  |-  ( ( ( Base `  ( SymGrp `
 N ) )  e.  Fin  /\  (pmEven `  N )  C_  ( Base `  ( SymGrp `  N
) ) )  -> 
(pmEven `  N )  e.  Fin )
26324, 261, 262syl2anc 661 . . . . 5  |-  ( ph  ->  (pmEven `  N )  e.  Fin )
26471ralrimiva 2799 . . . . 5  |-  ( ph  ->  A. p  e.  (pmEven `  N ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) )  e.  ( Base `  R
) )
26512, 18, 263, 264gsummptcl 16458 . . . 4  |-  ( ph  ->  ( R  gsumg  ( p  e.  (pmEven `  N )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )  e.  ( Base `  R ) )
26612, 13, 104, 84grprinv 15585 . . . 4  |-  ( ( R  e.  Grp  /\  ( R  gsumg  ( p  e.  (pmEven `  N )  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )  e.  ( Base `  R ) )  -> 
( ( R  gsumg  ( p  e.  (pmEven `  N
)  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) ( +g  `  R
) ( ( invg `  R ) `
 ( R  gsumg  ( p  e.  (pmEven `  N
)  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) ) )  =  .0.  )
26795, 265, 266syl2anc 661 . . 3  |-  ( ph  ->  ( ( R  gsumg  ( p  e.  (pmEven `  N
)  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) ( +g  `  R
) ( ( invg `  R ) `
 ( R  gsumg  ( p  e.  (pmEven `  N
)  |->  ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) ) ) )  =  .0.  )
268260, 267eqtrd 2475 . 2  |-  ( ph  ->  ( ( R  gsumg  ( ( p  e.  ( Base `  ( SymGrp `  N )
)  |->  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c
) X c ) ) ) ) )  |`  (pmEven `  N )
) ) ( +g  `  R ) ( R 
gsumg  ( ( p  e.  ( Base `  ( SymGrp `
 N ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )
( .r `  R
) ( (mulGrp `  R )  gsumg  ( c  e.  N  |->  ( ( p `  c ) X c ) ) ) ) )  |`  ( ( Base `  ( SymGrp `  N
) )  \  (pmEven `  N ) ) ) ) )  =  .0.  )
26911, 60, 2683eqtrd 2479 1  |-  ( ph  ->  ( D `  X
)  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715   _Vcvv 2972    \ cdif 3325    u. cun 3326    i^i cin 3327    C_ wss 3328   (/)c0 3637   {cpr 3879   class class class wbr 4292    e. cmpt 4350    _I cid 4631    X. cxp 4838   dom cdm 4840   ran crn 4841    |` cres 4842    o. ccom 4844    Fn wfn 5413   -->wf 5414   -1-1-onto->wf1o 5417   ` cfv 5418  (class class class)co 6091   2oc2o 6914    ^m cmap 7214    ~~ cen 7307   Fincfn 7310   1c1 9283    x. cmul 9287   -ucneg 9596   Basecbs 14174   ↾s cress 14175   +g cplusg 14238   .rcmulr 14239   0gc0g 14378    gsumg cgsu 14379   Grpcgrp 15410   invgcminusg 15411   MndHom cmhm 15462    GrpHom cghm 15744   SymGrpcsymg 15882  pmTrspcpmtr 15947  pmSgncpsgn 15995  pmEvencevpm 15996  CMndccmn 16277   Abelcabel 16278  mulGrpcmgp 16591   1rcur 16603   Ringcrg 16645   CRingccrg 16646  ℂfldccnfld 17818   ZRHomczrh 17931   Mat cmat 18280   maDet cmdat 18395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-xor 1351  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-ot 3886  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-om 6477  df-1st 6577  df-2nd 6578  df-supp 6691  df-tpos 6745  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-map 7216  df-pm 7217  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fsupp 7621  df-sup 7691  df-oi 7724  df-card 8109  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-rp 10992  df-fz 11438  df-fzo 11549  df-seq 11807  df-exp 11866  df-hash 12104  df-word 12229  df-concat 12231  df-s1 12232  df-substr 12233  df-splice 12234  df-reverse 12235  df-s2 12475  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-hom 14262  df-cco 14263  df-0g 14380  df-gsum 14381  df-prds 14386  df-pws 14388  df-mre 14524  df-mrc 14525  df-acs 14527  df-mnd 15415  df-mhm 15464  df-submnd 15465  df-grp 15545  df-minusg 15546  df-mulg 15548  df-subg 15678  df-ghm 15745  df-gim 15787  df-cntz 15835  df-oppg 15861  df-symg 15883  df-pmtr 15948  df-psgn 15997  df-evpm 15998  df-cmn 16279  df-abl 16280  df-mgp 16592  df-ur 16604  df-rng 16647  df-cring 16648  df-oppr 16715  df-dvdsr 16733  df-unit 16734  df-invr 16764  df-dvr 16775  df-rnghom 16806  df-drng 16834  df-subrg 16863  df-sra 17253  df-rgmod 17254  df-cnfld 17819  df-zring 17884  df-zrh 17935  df-dsmm 18157  df-frlm 18172  df-mat 18282  df-mdet 18396
This theorem is referenced by:  mdetralt2  18415  mdetuni0  18427  mdetmul  18429
  Copyright terms: Public domain W3C validator