MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetdiaglem Structured version   Unicode version

Theorem mdetdiaglem 18860
Description: Lemma for mdetdiag 18861. Previously part of proof for mdet1 18863. (Contributed by SO, 10-Jul-2018.) (Revised by AV, 17-Aug-2019.)
Hypotheses
Ref Expression
mdetdiag.d  |-  D  =  ( N maDet  R )
mdetdiag.a  |-  A  =  ( N Mat  R )
mdetdiag.b  |-  B  =  ( Base `  A
)
mdetdiag.g  |-  G  =  (mulGrp `  R )
mdetdiag.0  |-  .0.  =  ( 0g `  R )
mdetdiaglem.g  |-  H  =  ( Base `  ( SymGrp `
 N ) )
mdetdiaglem.z  |-  Z  =  ( ZRHom `  R
)
mdetdiaglem.s  |-  S  =  (pmSgn `  N )
mdetdiaglem.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
mdetdiaglem  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  ( (
( Z  o.  S
) `  P )  .x.  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) ) )  =  .0.  )
Distinct variable groups:    B, k    k, G    k, H    i, M, j, k    i, N, j, k    P, i, j, k    R, k    .0. , i, j, k
Allowed substitution hints:    A( i, j, k)    B( i, j)    D( i, j, k)    R( i, j)    S( i, j, k)    .x. ( i, j, k)    G( i, j)    H( i, j)    Z( i, j, k)

Proof of Theorem mdetdiaglem
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 mdetdiaglem.z . . . . . 6  |-  Z  =  ( ZRHom `  R
)
21a1i 11 . . . . 5  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  Z  =  ( ZRHom `  R )
)
3 mdetdiaglem.s . . . . . 6  |-  S  =  (pmSgn `  N )
43a1i 11 . . . . 5  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  S  =  (pmSgn `  N ) )
52, 4coeq12d 5158 . . . 4  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  ( Z  o.  S )  =  ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) )
65fveq1d 5859 . . 3  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  ( ( Z  o.  S ) `  P )  =  ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  P ) )
7 eqid 2460 . . . . . . . . . . . 12  |-  ( SymGrp `  N )  =  (
SymGrp `  N )
8 mdetdiaglem.g . . . . . . . . . . . 12  |-  H  =  ( Base `  ( SymGrp `
 N ) )
97, 8symgbasf1o 16196 . . . . . . . . . . 11  |-  ( P  e.  H  ->  P : N -1-1-onto-> N )
10 f1ofn 5808 . . . . . . . . . . 11  |-  ( P : N -1-1-onto-> N  ->  P  Fn  N )
119, 10syl 16 . . . . . . . . . 10  |-  ( P  e.  H  ->  P  Fn  N )
12 fnnfpeq0 6083 . . . . . . . . . 10  |-  ( P  Fn  N  ->  ( dom  ( P  \  _I  )  =  (/)  <->  P  =  (  _I  |`  N ) ) )
1311, 12syl 16 . . . . . . . . 9  |-  ( P  e.  H  ->  ( dom  ( P  \  _I  )  =  (/)  <->  P  =  (  _I  |`  N ) ) )
1413adantl 466 . . . . . . . 8  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  ( dom  ( P 
\  _I  )  =  (/) 
<->  P  =  (  _I  |`  N ) ) )
1514bicomd 201 . . . . . . 7  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  ( P  =  (  _I  |`  N )  <->  dom  ( P  \  _I  )  =  (/) ) )
1615necon3bid 2718 . . . . . 6  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  ( P  =/=  (  _I  |`  N )  <->  dom  ( P 
\  _I  )  =/=  (/) ) )
17 n0 3787 . . . . . . 7  |-  ( dom  ( P  \  _I  )  =/=  (/)  <->  E. s  s  e. 
dom  ( P  \  _I  ) )
18 eqid 2460 . . . . . . . . . . 11  |-  ( Base `  G )  =  (
Base `  G )
19 mdetdiag.g . . . . . . . . . . . 12  |-  G  =  (mulGrp `  R )
20 eqid 2460 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
2119, 20mgpplusg 16928 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( +g  `  G
)
2219crngmgp 16987 . . . . . . . . . . . . 13  |-  ( R  e.  CRing  ->  G  e. CMnd )
23223ad2ant1 1012 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  G  e. CMnd )
2423ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  G  e. CMnd )
25 simpll2 1031 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  N  e.  Fin )
26 mdetdiag.a . . . . . . . . . . . . . . . . 17  |-  A  =  ( N Mat  R )
27 eqid 2460 . . . . . . . . . . . . . . . . 17  |-  ( Base `  R )  =  (
Base `  R )
28 mdetdiag.b . . . . . . . . . . . . . . . . 17  |-  B  =  ( Base `  A
)
2926, 27, 28matbas2i 18684 . . . . . . . . . . . . . . . 16  |-  ( M  e.  B  ->  M  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
30293ad2ant3 1014 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  M  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
31 elmapi 7430 . . . . . . . . . . . . . . 15  |-  ( M  e.  ( ( Base `  R )  ^m  ( N  X.  N ) )  ->  M : ( N  X.  N ) --> ( Base `  R
) )
3230, 31syl 16 . . . . . . . . . . . . . 14  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  M : ( N  X.  N ) --> ( Base `  R ) )
33 eqidd 2461 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  ( N  X.  N )  =  ( N  X.  N
) )
3419, 27mgpbas 16930 . . . . . . . . . . . . . . . . 17  |-  ( Base `  R )  =  (
Base `  G )
3534eqcomi 2473 . . . . . . . . . . . . . . . 16  |-  ( Base `  G )  =  (
Base `  R )
3635a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  ( Base `  G )  =  ( Base `  R
) )
3733, 36feq23d 5717 . . . . . . . . . . . . . 14  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  ( M : ( N  X.  N ) --> ( Base `  G )  <->  M :
( N  X.  N
) --> ( Base `  R
) ) )
3832, 37mpbird 232 . . . . . . . . . . . . 13  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  M : ( N  X.  N ) --> ( Base `  G ) )
3938ad3antrrr 729 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B
)  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  /\  k  e.  N )  ->  M : ( N  X.  N ) --> ( Base `  G ) )
407, 8symgbasf 16197 . . . . . . . . . . . . . 14  |-  ( P  e.  H  ->  P : N --> N )
4140ad2antrl 727 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  P : N --> N )
4241ffvelrnda 6012 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B
)  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  /\  k  e.  N )  ->  ( P `  k )  e.  N )
43 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B
)  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  /\  k  e.  N )  ->  k  e.  N )
4439, 42, 43fovrnd 6422 . . . . . . . . . . 11  |-  ( ( ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B
)  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  /\  k  e.  N )  ->  (
( P `  k
) M k )  e.  ( Base `  G
) )
45 disjdif 3892 . . . . . . . . . . . 12  |-  ( { s }  i^i  ( N  \  { s } ) )  =  (/)
4645a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( { s }  i^i  ( N  \  { s } ) )  =  (/) )
47 difss 3624 . . . . . . . . . . . . . . . . . 18  |-  ( P 
\  _I  )  C_  P
48 dmss 5193 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  \  _I  )  C_  P  ->  dom  ( P 
\  _I  )  C_  dom  P )
4947, 48ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  dom  ( P  \  _I  )  C_  dom  P
5040adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  P : N --> N )
51 fdm 5726 . . . . . . . . . . . . . . . . . 18  |-  ( P : N --> N  ->  dom  P  =  N )
5250, 51syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  dom  P  =  N )
5349, 52syl5sseq 3545 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  dom  ( P  \  _I  )  C_  N )
5453sseld 3496 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  ( s  e.  dom  ( P  \  _I  )  ->  s  e.  N ) )
5554impr 619 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  s  e.  N )
5655snssd 4165 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  { s }  C_  N )
57 undif 3900 . . . . . . . . . . . . 13  |-  ( { s }  C_  N  <->  ( { s }  u.  ( N  \  { s } ) )  =  N )
5856, 57sylib 196 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( { s }  u.  ( N  \  { s } ) )  =  N )
5958eqcomd 2468 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  N  =  ( { s }  u.  ( N 
\  { s } ) ) )
6018, 21, 24, 25, 44, 46, 59gsummptfidmsplit 16734 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) )  =  ( ( G  gsumg  ( k  e.  { s } 
|->  ( ( P `  k ) M k ) ) ) ( .r `  R ) ( G  gsumg  ( k  e.  ( N  \  { s } )  |->  ( ( P `  k ) M k ) ) ) ) )
61 crngrng 16989 . . . . . . . . . . . . . . . . 17  |-  ( R  e.  CRing  ->  R  e.  Ring )
6261adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  R  e.  Ring )
6319rngmgp 16985 . . . . . . . . . . . . . . . 16  |-  ( R  e.  Ring  ->  G  e. 
Mnd )
6462, 63syl 16 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  G  e.  Mnd )
65643adant3 1011 . . . . . . . . . . . . . 14  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  G  e.  Mnd )
6665ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  G  e.  Mnd )
67 vex 3109 . . . . . . . . . . . . . 14  |-  s  e. 
_V
6867a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  s  e.  _V )
6932ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  M : ( N  X.  N ) --> ( Base `  R ) )
7041, 55ffvelrnd 6013 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( P `  s )  e.  N )
7169, 70, 55fovrnd 6422 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  (
( P `  s
) M s )  e.  ( Base `  R
) )
72 fveq2 5857 . . . . . . . . . . . . . . 15  |-  ( k  =  s  ->  ( P `  k )  =  ( P `  s ) )
73 id 22 . . . . . . . . . . . . . . 15  |-  ( k  =  s  ->  k  =  s )
7472, 73oveq12d 6293 . . . . . . . . . . . . . 14  |-  ( k  =  s  ->  (
( P `  k
) M k )  =  ( ( P `
 s ) M s ) )
7534, 74gsumsn 16765 . . . . . . . . . . . . 13  |-  ( ( G  e.  Mnd  /\  s  e.  _V  /\  (
( P `  s
) M s )  e.  ( Base `  R
) )  ->  ( G  gsumg  ( k  e.  {
s }  |->  ( ( P `  k ) M k ) ) )  =  ( ( P `  s ) M s ) )
7666, 68, 71, 75syl3anc 1223 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( G  gsumg  ( k  e.  {
s }  |->  ( ( P `  k ) M k ) ) )  =  ( ( P `  s ) M s ) )
77 simprr 756 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  s  e.  dom  ( P  \  _I  ) )
7811ad2antrl 727 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  P  Fn  N )
79 fnelnfp 6082 . . . . . . . . . . . . . . 15  |-  ( ( P  Fn  N  /\  s  e.  N )  ->  ( s  e.  dom  ( P  \  _I  )  <->  ( P `  s )  =/=  s ) )
8078, 55, 79syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  (
s  e.  dom  ( P  \  _I  )  <->  ( P `  s )  =/=  s
) )
8177, 80mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( P `  s )  =/=  s )
8240ad2antrl 727 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  P : N --> N )
8340adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  P : N
--> N )
8483, 51syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  dom  P  =  N )
8549, 84syl5sseq 3545 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  dom  ( P 
\  _I  )  C_  N )
8685sseld 3496 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  ( s  e.  dom  ( P  \  _I  )  ->  s  e.  N ) )
8786impr 619 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  s  e.  N )
8882, 87ffvelrnd 6013 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( P `  s )  e.  N )
89 neeq1 2741 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  ( P `  s )  ->  (
i  =/=  j  <->  ( P `  s )  =/=  j
) )
90 oveq1 6282 . . . . . . . . . . . . . . . . . . 19  |-  ( i  =  ( P `  s )  ->  (
i M j )  =  ( ( P `
 s ) M j ) )
9190eqeq1d 2462 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  ( P `  s )  ->  (
( i M j )  =  .0.  <->  ( ( P `  s ) M j )  =  .0.  ) )
9289, 91imbi12d 320 . . . . . . . . . . . . . . . . 17  |-  ( i  =  ( P `  s )  ->  (
( i  =/=  j  ->  ( i M j )  =  .0.  )  <->  ( ( P `  s
)  =/=  j  -> 
( ( P `  s ) M j )  =  .0.  )
) )
93 neeq2 2743 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  s  ->  (
( P `  s
)  =/=  j  <->  ( P `  s )  =/=  s
) )
94 oveq2 6283 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  s  ->  (
( P `  s
) M j )  =  ( ( P `
 s ) M s ) )
9594eqeq1d 2462 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  s  ->  (
( ( P `  s ) M j )  =  .0.  <->  ( ( P `  s ) M s )  =  .0.  ) )
9693, 95imbi12d 320 . . . . . . . . . . . . . . . . 17  |-  ( j  =  s  ->  (
( ( P `  s )  =/=  j  ->  ( ( P `  s ) M j )  =  .0.  )  <->  ( ( P `  s
)  =/=  s  -> 
( ( P `  s ) M s )  =  .0.  )
) )
9792, 96rspc2v 3216 . . . . . . . . . . . . . . . 16  |-  ( ( ( P `  s
)  e.  N  /\  s  e.  N )  ->  ( A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  ->  (
( P `  s
)  =/=  s  -> 
( ( P `  s ) M s )  =  .0.  )
) )
9888, 87, 97syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  ->  ( ( P `  s )  =/=  s  ->  ( ( P `  s ) M s )  =  .0.  )
) )
9998impancom 440 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )
)  ->  ( ( P  e.  H  /\  s  e.  dom  ( P 
\  _I  ) )  ->  ( ( P `
 s )  =/=  s  ->  ( ( P `  s ) M s )  =  .0.  ) ) )
10099imp 429 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  (
( P `  s
)  =/=  s  -> 
( ( P `  s ) M s )  =  .0.  )
)
10181, 100mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  (
( P `  s
) M s )  =  .0.  )
10276, 101eqtrd 2501 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( G  gsumg  ( k  e.  {
s }  |->  ( ( P `  k ) M k ) ) )  =  .0.  )
103102oveq1d 6290 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  (
( G  gsumg  ( k  e.  {
s }  |->  ( ( P `  k ) M k ) ) ) ( .r `  R ) ( G 
gsumg  ( k  e.  ( N  \  { s } )  |->  ( ( P `  k ) M k ) ) ) )  =  (  .0.  ( .r `  R ) ( G 
gsumg  ( k  e.  ( N  \  { s } )  |->  ( ( P `  k ) M k ) ) ) ) )
104613ad2ant1 1012 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  R  e.  Ring )
105104ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  R  e.  Ring )
10623adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  G  e. CMnd )
107 simpl2 995 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  N  e.  Fin )
108 difss 3624 . . . . . . . . . . . . . 14  |-  ( N 
\  { s } )  C_  N
109 ssfi 7730 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Fin  /\  ( N  \  { s } )  C_  N
)  ->  ( N  \  { s } )  e.  Fin )
110107, 108, 109sylancl 662 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  ( N  \  { s } )  e.  Fin )
11132ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  /\  k  e.  ( N  \  { s } ) )  ->  M : ( N  X.  N ) --> ( Base `  R ) )
11283adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  /\  k  e.  ( N  \  { s } ) )  ->  P : N --> N )
113 eldifi 3619 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( N  \  { s } )  ->  k  e.  N
)
114113adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  /\  k  e.  ( N  \  { s } ) )  -> 
k  e.  N )
115112, 114ffvelrnd 6013 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  /\  k  e.  ( N  \  { s } ) )  -> 
( P `  k
)  e.  N )
116111, 115, 114fovrnd 6422 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  /\  k  e.  ( N  \  { s } ) )  -> 
( ( P `  k ) M k )  e.  ( Base `  R ) )
117116ralrimiva 2871 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  A. k  e.  ( N  \  {
s } ) ( ( P `  k
) M k )  e.  ( Base `  R
) )
11834, 106, 110, 117gsummptcl 16778 . . . . . . . . . . . 12  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  ( G  gsumg  ( k  e.  ( N 
\  { s } )  |->  ( ( P `
 k ) M k ) ) )  e.  ( Base `  R
) )
119118ad2ant2r 746 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( G  gsumg  ( k  e.  ( N  \  { s } )  |->  ( ( P `  k ) M k ) ) )  e.  ( Base `  R ) )
120 mdetdiag.0 . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  R )
12127, 20, 120rnglz 17015 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  ( G  gsumg  ( k  e.  ( N  \  { s } )  |->  ( ( P `  k ) M k ) ) )  e.  ( Base `  R ) )  -> 
(  .0.  ( .r
`  R ) ( G  gsumg  ( k  e.  ( N  \  { s } )  |->  ( ( P `  k ) M k ) ) ) )  =  .0.  )
122105, 119, 121syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  (  .0.  ( .r `  R
) ( G  gsumg  ( k  e.  ( N  \  { s } ) 
|->  ( ( P `  k ) M k ) ) ) )  =  .0.  )
12360, 103, 1223eqtrd 2505 . . . . . . . . 9  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) )  =  .0.  )
124123expr 615 . . . . . . . 8  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  ( s  e.  dom  ( P  \  _I  )  ->  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) )  =  .0.  ) )
125124exlimdv 1695 . . . . . . 7  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  ( E. s  s  e.  dom  ( P 
\  _I  )  -> 
( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) )  =  .0.  ) )
12617, 125syl5bi 217 . . . . . 6  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  ( dom  ( P 
\  _I  )  =/=  (/)  ->  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) )  =  .0.  )
)
12716, 126sylbid 215 . . . . 5  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  ( P  =/=  (  _I  |`  N )  -> 
( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) )  =  .0.  ) )
128127expimpd 603 . . . 4  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )
)  ->  ( ( P  e.  H  /\  P  =/=  (  _I  |`  N ) )  ->  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k
) M k ) ) )  =  .0.  ) )
1291283impia 1188 . . 3  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k
) M k ) ) )  =  .0.  )
1306, 129oveq12d 6293 . 2  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  ( (
( Z  o.  S
) `  P )  .x.  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) ) )  =  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  P )  .x.  .0.  ) )
131 3simpa 988 . . . 4  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  ( R  e.  CRing  /\  N  e.  Fin ) )
132 simpl 457 . . . 4  |-  ( ( P  e.  H  /\  P  =/=  (  _I  |`  N ) )  ->  P  e.  H )
13361ad2antrr 725 . . . . 5  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin )  /\  P  e.  H
)  ->  R  e.  Ring )
134 zrhpsgnmhm 18380 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  N  e.  Fin )  ->  (
( ZRHom `  R
)  o.  (pmSgn `  N ) )  e.  ( ( SymGrp `  N
) MndHom  (mulGrp `  R )
) )
13561, 134sylan 471 . . . . . . 7  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  (
( ZRHom `  R
)  o.  (pmSgn `  N ) )  e.  ( ( SymGrp `  N
) MndHom  (mulGrp `  R )
) )
136 eqid 2460 . . . . . . . 8  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
1378, 136mhmf 15775 . . . . . . 7  |-  ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) )  e.  ( ( SymGrp `  N
) MndHom  (mulGrp `  R )
)  ->  ( ( ZRHom `  R )  o.  (pmSgn `  N )
) : H --> ( Base `  (mulGrp `  R )
) )
138135, 137syl 16 . . . . . 6  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  (
( ZRHom `  R
)  o.  (pmSgn `  N ) ) : H --> ( Base `  (mulGrp `  R ) ) )
139138ffvelrnda 6012 . . . . 5  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin )  /\  P  e.  H
)  ->  ( (
( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  P )  e.  (
Base `  (mulGrp `  R
) ) )
140 eqid 2460 . . . . . . . 8  |-  (mulGrp `  R )  =  (mulGrp `  R )
141140, 27mgpbas 16930 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  (mulGrp `  R
) )
142141eqcomi 2473 . . . . . 6  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  R )
143 mdetdiaglem.t . . . . . 6  |-  .x.  =  ( .r `  R )
144142, 143, 120rngrz 17016 . . . . 5  |-  ( ( R  e.  Ring  /\  (
( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  P )  e.  (
Base `  (mulGrp `  R
) ) )  -> 
( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  P )  .x.  .0.  )  =  .0.  )
145133, 139, 144syl2anc 661 . . . 4  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin )  /\  P  e.  H
)  ->  ( (
( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  P )  .x.  .0.  )  =  .0.  )
146131, 132, 145syl2an 477 . . 3  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  ( (
( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  P )  .x.  .0.  )  =  .0.  )
1471463adant2 1010 . 2  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  ( (
( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  P )  .x.  .0.  )  =  .0.  )
148130, 147eqtrd 2501 1  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  ( (
( Z  o.  S
) `  P )  .x.  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) ) )  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374   E.wex 1591    e. wcel 1762    =/= wne 2655   A.wral 2807   _Vcvv 3106    \ cdif 3466    u. cun 3467    i^i cin 3468    C_ wss 3469   (/)c0 3778   {csn 4020    |-> cmpt 4498    _I cid 4783    X. cxp 4990   dom cdm 4992    |` cres 4994    o. ccom 4996    Fn wfn 5574   -->wf 5575   -1-1-onto->wf1o 5578   ` cfv 5579  (class class class)co 6275    ^m cmap 7410   Fincfn 7506   Basecbs 14479   .rcmulr 14545   0gc0g 14684    gsumg cgsu 14685   Mndcmnd 15715   MndHom cmhm 15768   SymGrpcsymg 16190  pmSgncpsgn 16303  CMndccmn 16587  mulGrpcmgp 16924   Ringcrg 16979   CRingccrg 16980   ZRHomczrh 18297   Mat cmat 18669   maDet cmdat 18846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-xor 1356  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-ot 4029  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-tpos 6945  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fsupp 7819  df-sup 7890  df-oi 7924  df-card 8309  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-rp 11210  df-fz 11662  df-fzo 11782  df-seq 12064  df-exp 12123  df-hash 12361  df-word 12495  df-concat 12497  df-s1 12498  df-substr 12499  df-splice 12500  df-reverse 12501  df-s2 12763  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-hom 14568  df-cco 14569  df-0g 14686  df-gsum 14687  df-prds 14692  df-pws 14694  df-mre 14830  df-mrc 14831  df-acs 14833  df-mnd 15721  df-mhm 15770  df-submnd 15771  df-grp 15851  df-minusg 15852  df-mulg 15854  df-subg 15986  df-ghm 16053  df-gim 16095  df-cntz 16143  df-oppg 16169  df-symg 16191  df-pmtr 16256  df-psgn 16305  df-cmn 16589  df-abl 16590  df-mgp 16925  df-ur 16937  df-rng 16981  df-cring 16982  df-oppr 17049  df-dvdsr 17067  df-unit 17068  df-invr 17098  df-dvr 17109  df-rnghom 17141  df-drng 17174  df-subrg 17203  df-sra 17594  df-rgmod 17595  df-cnfld 18185  df-zring 18250  df-zrh 18301  df-dsmm 18523  df-frlm 18538  df-mat 18670
This theorem is referenced by:  mdetdiag  18861
  Copyright terms: Public domain W3C validator