MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetdiaglem Structured version   Unicode version

Theorem mdetdiaglem 19392
Description: Lemma for mdetdiag 19393. Previously part of proof for mdet1 19395. (Contributed by SO, 10-Jul-2018.) (Revised by AV, 17-Aug-2019.)
Hypotheses
Ref Expression
mdetdiag.d  |-  D  =  ( N maDet  R )
mdetdiag.a  |-  A  =  ( N Mat  R )
mdetdiag.b  |-  B  =  ( Base `  A
)
mdetdiag.g  |-  G  =  (mulGrp `  R )
mdetdiag.0  |-  .0.  =  ( 0g `  R )
mdetdiaglem.g  |-  H  =  ( Base `  ( SymGrp `
 N ) )
mdetdiaglem.z  |-  Z  =  ( ZRHom `  R
)
mdetdiaglem.s  |-  S  =  (pmSgn `  N )
mdetdiaglem.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
mdetdiaglem  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  ( (
( Z  o.  S
) `  P )  .x.  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) ) )  =  .0.  )
Distinct variable groups:    B, k    k, G    k, H    i, M, j, k    i, N, j, k    P, i, j, k    R, k    .0. , i, j, k
Allowed substitution hints:    A( i, j, k)    B( i, j)    D( i, j, k)    R( i, j)    S( i, j, k)    .x. ( i, j, k)    G( i, j)    H( i, j)    Z( i, j, k)

Proof of Theorem mdetdiaglem
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 mdetdiaglem.z . . . . . 6  |-  Z  =  ( ZRHom `  R
)
21a1i 11 . . . . 5  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  Z  =  ( ZRHom `  R )
)
3 mdetdiaglem.s . . . . . 6  |-  S  =  (pmSgn `  N )
43a1i 11 . . . . 5  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  S  =  (pmSgn `  N ) )
52, 4coeq12d 4988 . . . 4  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  ( Z  o.  S )  =  ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) )
65fveq1d 5851 . . 3  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  ( ( Z  o.  S ) `  P )  =  ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  P ) )
7 eqid 2402 . . . . . . . . . . . 12  |-  ( SymGrp `  N )  =  (
SymGrp `  N )
8 mdetdiaglem.g . . . . . . . . . . . 12  |-  H  =  ( Base `  ( SymGrp `
 N ) )
97, 8symgbasf1o 16732 . . . . . . . . . . 11  |-  ( P  e.  H  ->  P : N -1-1-onto-> N )
10 f1ofn 5800 . . . . . . . . . . 11  |-  ( P : N -1-1-onto-> N  ->  P  Fn  N )
119, 10syl 17 . . . . . . . . . 10  |-  ( P  e.  H  ->  P  Fn  N )
12 fnnfpeq0 6082 . . . . . . . . . 10  |-  ( P  Fn  N  ->  ( dom  ( P  \  _I  )  =  (/)  <->  P  =  (  _I  |`  N ) ) )
1311, 12syl 17 . . . . . . . . 9  |-  ( P  e.  H  ->  ( dom  ( P  \  _I  )  =  (/)  <->  P  =  (  _I  |`  N ) ) )
1413adantl 464 . . . . . . . 8  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  ( dom  ( P 
\  _I  )  =  (/) 
<->  P  =  (  _I  |`  N ) ) )
1514bicomd 201 . . . . . . 7  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  ( P  =  (  _I  |`  N )  <->  dom  ( P  \  _I  )  =  (/) ) )
1615necon3bid 2661 . . . . . 6  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  ( P  =/=  (  _I  |`  N )  <->  dom  ( P 
\  _I  )  =/=  (/) ) )
17 n0 3748 . . . . . . 7  |-  ( dom  ( P  \  _I  )  =/=  (/)  <->  E. s  s  e. 
dom  ( P  \  _I  ) )
18 eqid 2402 . . . . . . . . . . 11  |-  ( Base `  G )  =  (
Base `  G )
19 mdetdiag.g . . . . . . . . . . . 12  |-  G  =  (mulGrp `  R )
20 eqid 2402 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
2119, 20mgpplusg 17465 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( +g  `  G
)
2219crngmgp 17526 . . . . . . . . . . . . 13  |-  ( R  e.  CRing  ->  G  e. CMnd )
23223ad2ant1 1018 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  G  e. CMnd )
2423ad2antrr 724 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  G  e. CMnd )
25 simpll2 1037 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  N  e.  Fin )
26 mdetdiag.a . . . . . . . . . . . . . . . . 17  |-  A  =  ( N Mat  R )
27 eqid 2402 . . . . . . . . . . . . . . . . 17  |-  ( Base `  R )  =  (
Base `  R )
28 mdetdiag.b . . . . . . . . . . . . . . . . 17  |-  B  =  ( Base `  A
)
2926, 27, 28matbas2i 19216 . . . . . . . . . . . . . . . 16  |-  ( M  e.  B  ->  M  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
30293ad2ant3 1020 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  M  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
31 elmapi 7478 . . . . . . . . . . . . . . 15  |-  ( M  e.  ( ( Base `  R )  ^m  ( N  X.  N ) )  ->  M : ( N  X.  N ) --> ( Base `  R
) )
3230, 31syl 17 . . . . . . . . . . . . . 14  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  M : ( N  X.  N ) --> ( Base `  R ) )
3319, 27mgpbas 17467 . . . . . . . . . . . . . . . . 17  |-  ( Base `  R )  =  (
Base `  G )
3433eqcomi 2415 . . . . . . . . . . . . . . . 16  |-  ( Base `  G )  =  (
Base `  R )
3534a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  ( Base `  G )  =  ( Base `  R
) )
3635feq3d 5702 . . . . . . . . . . . . . 14  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  ( M : ( N  X.  N ) --> ( Base `  G )  <->  M :
( N  X.  N
) --> ( Base `  R
) ) )
3732, 36mpbird 232 . . . . . . . . . . . . 13  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  M : ( N  X.  N ) --> ( Base `  G ) )
3837ad3antrrr 728 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B
)  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  /\  k  e.  N )  ->  M : ( N  X.  N ) --> ( Base `  G ) )
397, 8symgbasf 16733 . . . . . . . . . . . . . 14  |-  ( P  e.  H  ->  P : N --> N )
4039ad2antrl 726 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  P : N --> N )
4140ffvelrnda 6009 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B
)  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  /\  k  e.  N )  ->  ( P `  k )  e.  N )
42 simpr 459 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B
)  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  /\  k  e.  N )  ->  k  e.  N )
4338, 41, 42fovrnd 6428 . . . . . . . . . . 11  |-  ( ( ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B
)  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  /\  k  e.  N )  ->  (
( P `  k
) M k )  e.  ( Base `  G
) )
44 disjdif 3844 . . . . . . . . . . . 12  |-  ( { s }  i^i  ( N  \  { s } ) )  =  (/)
4544a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( { s }  i^i  ( N  \  { s } ) )  =  (/) )
46 difss 3570 . . . . . . . . . . . . . . . . . 18  |-  ( P 
\  _I  )  C_  P
47 dmss 5023 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  \  _I  )  C_  P  ->  dom  ( P 
\  _I  )  C_  dom  P )
4846, 47ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  dom  ( P  \  _I  )  C_  dom  P
4939adantl 464 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  P : N --> N )
50 fdm 5718 . . . . . . . . . . . . . . . . . 18  |-  ( P : N --> N  ->  dom  P  =  N )
5149, 50syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  dom  P  =  N )
5248, 51syl5sseq 3490 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  dom  ( P  \  _I  )  C_  N )
5352sseld 3441 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  ( s  e.  dom  ( P  \  _I  )  ->  s  e.  N ) )
5453impr 617 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  s  e.  N )
5554snssd 4117 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  { s }  C_  N )
56 undif 3852 . . . . . . . . . . . . 13  |-  ( { s }  C_  N  <->  ( { s }  u.  ( N  \  { s } ) )  =  N )
5755, 56sylib 196 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( { s }  u.  ( N  \  { s } ) )  =  N )
5857eqcomd 2410 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  N  =  ( { s }  u.  ( N 
\  { s } ) ) )
5918, 21, 24, 25, 43, 45, 58gsummptfidmsplit 17273 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) )  =  ( ( G  gsumg  ( k  e.  { s } 
|->  ( ( P `  k ) M k ) ) ) ( .r `  R ) ( G  gsumg  ( k  e.  ( N  \  { s } )  |->  ( ( P `  k ) M k ) ) ) ) )
60 crngring 17529 . . . . . . . . . . . . . . . . 17  |-  ( R  e.  CRing  ->  R  e.  Ring )
6160adantr 463 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  R  e.  Ring )
6219ringmgp 17524 . . . . . . . . . . . . . . . 16  |-  ( R  e.  Ring  ->  G  e. 
Mnd )
6361, 62syl 17 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  G  e.  Mnd )
64633adant3 1017 . . . . . . . . . . . . . 14  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  G  e.  Mnd )
6564ad2antrr 724 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  G  e.  Mnd )
66 vex 3062 . . . . . . . . . . . . . 14  |-  s  e. 
_V
6766a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  s  e.  _V )
6832ad2antrr 724 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  M : ( N  X.  N ) --> ( Base `  R ) )
6940, 54ffvelrnd 6010 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( P `  s )  e.  N )
7068, 69, 54fovrnd 6428 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  (
( P `  s
) M s )  e.  ( Base `  R
) )
71 fveq2 5849 . . . . . . . . . . . . . . 15  |-  ( k  =  s  ->  ( P `  k )  =  ( P `  s ) )
72 id 22 . . . . . . . . . . . . . . 15  |-  ( k  =  s  ->  k  =  s )
7371, 72oveq12d 6296 . . . . . . . . . . . . . 14  |-  ( k  =  s  ->  (
( P `  k
) M k )  =  ( ( P `
 s ) M s ) )
7433, 73gsumsn 17302 . . . . . . . . . . . . 13  |-  ( ( G  e.  Mnd  /\  s  e.  _V  /\  (
( P `  s
) M s )  e.  ( Base `  R
) )  ->  ( G  gsumg  ( k  e.  {
s }  |->  ( ( P `  k ) M k ) ) )  =  ( ( P `  s ) M s ) )
7565, 67, 70, 74syl3anc 1230 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( G  gsumg  ( k  e.  {
s }  |->  ( ( P `  k ) M k ) ) )  =  ( ( P `  s ) M s ) )
76 simprr 758 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  s  e.  dom  ( P  \  _I  ) )
7711ad2antrl 726 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  P  Fn  N )
78 fnelnfp 6081 . . . . . . . . . . . . . . 15  |-  ( ( P  Fn  N  /\  s  e.  N )  ->  ( s  e.  dom  ( P  \  _I  )  <->  ( P `  s )  =/=  s ) )
7977, 54, 78syl2anc 659 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  (
s  e.  dom  ( P  \  _I  )  <->  ( P `  s )  =/=  s
) )
8076, 79mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( P `  s )  =/=  s )
8139ad2antrl 726 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  P : N --> N )
8239adantl 464 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  P : N
--> N )
8382, 50syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  dom  P  =  N )
8448, 83syl5sseq 3490 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  dom  ( P 
\  _I  )  C_  N )
8584sseld 3441 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  ( s  e.  dom  ( P  \  _I  )  ->  s  e.  N ) )
8685impr 617 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  s  e.  N )
8781, 86ffvelrnd 6010 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( P `  s )  e.  N )
88 neeq1 2684 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  ( P `  s )  ->  (
i  =/=  j  <->  ( P `  s )  =/=  j
) )
89 oveq1 6285 . . . . . . . . . . . . . . . . . . 19  |-  ( i  =  ( P `  s )  ->  (
i M j )  =  ( ( P `
 s ) M j ) )
9089eqeq1d 2404 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  ( P `  s )  ->  (
( i M j )  =  .0.  <->  ( ( P `  s ) M j )  =  .0.  ) )
9188, 90imbi12d 318 . . . . . . . . . . . . . . . . 17  |-  ( i  =  ( P `  s )  ->  (
( i  =/=  j  ->  ( i M j )  =  .0.  )  <->  ( ( P `  s
)  =/=  j  -> 
( ( P `  s ) M j )  =  .0.  )
) )
92 neeq2 2686 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  s  ->  (
( P `  s
)  =/=  j  <->  ( P `  s )  =/=  s
) )
93 oveq2 6286 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  s  ->  (
( P `  s
) M j )  =  ( ( P `
 s ) M s ) )
9493eqeq1d 2404 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  s  ->  (
( ( P `  s ) M j )  =  .0.  <->  ( ( P `  s ) M s )  =  .0.  ) )
9592, 94imbi12d 318 . . . . . . . . . . . . . . . . 17  |-  ( j  =  s  ->  (
( ( P `  s )  =/=  j  ->  ( ( P `  s ) M j )  =  .0.  )  <->  ( ( P `  s
)  =/=  s  -> 
( ( P `  s ) M s )  =  .0.  )
) )
9691, 95rspc2v 3169 . . . . . . . . . . . . . . . 16  |-  ( ( ( P `  s
)  e.  N  /\  s  e.  N )  ->  ( A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  ->  (
( P `  s
)  =/=  s  -> 
( ( P `  s ) M s )  =  .0.  )
) )
9787, 86, 96syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  ->  ( ( P `  s )  =/=  s  ->  ( ( P `  s ) M s )  =  .0.  )
) )
9897impancom 438 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )
)  ->  ( ( P  e.  H  /\  s  e.  dom  ( P 
\  _I  ) )  ->  ( ( P `
 s )  =/=  s  ->  ( ( P `  s ) M s )  =  .0.  ) ) )
9998imp 427 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  (
( P `  s
)  =/=  s  -> 
( ( P `  s ) M s )  =  .0.  )
)
10080, 99mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  (
( P `  s
) M s )  =  .0.  )
10175, 100eqtrd 2443 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( G  gsumg  ( k  e.  {
s }  |->  ( ( P `  k ) M k ) ) )  =  .0.  )
102101oveq1d 6293 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  (
( G  gsumg  ( k  e.  {
s }  |->  ( ( P `  k ) M k ) ) ) ( .r `  R ) ( G 
gsumg  ( k  e.  ( N  \  { s } )  |->  ( ( P `  k ) M k ) ) ) )  =  (  .0.  ( .r `  R ) ( G 
gsumg  ( k  e.  ( N  \  { s } )  |->  ( ( P `  k ) M k ) ) ) ) )
103603ad2ant1 1018 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  R  e.  Ring )
104103ad2antrr 724 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  R  e.  Ring )
10523adantr 463 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  G  e. CMnd )
106 simpl2 1001 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  N  e.  Fin )
107 difss 3570 . . . . . . . . . . . . . 14  |-  ( N 
\  { s } )  C_  N
108 ssfi 7775 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Fin  /\  ( N  \  { s } )  C_  N
)  ->  ( N  \  { s } )  e.  Fin )
109106, 107, 108sylancl 660 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  ( N  \  { s } )  e.  Fin )
11032ad2antrr 724 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  /\  k  e.  ( N  \  { s } ) )  ->  M : ( N  X.  N ) --> ( Base `  R ) )
11182adantr 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  /\  k  e.  ( N  \  { s } ) )  ->  P : N --> N )
112 eldifi 3565 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( N  \  { s } )  ->  k  e.  N
)
113112adantl 464 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  /\  k  e.  ( N  \  { s } ) )  -> 
k  e.  N )
114111, 113ffvelrnd 6010 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  /\  k  e.  ( N  \  { s } ) )  -> 
( P `  k
)  e.  N )
115110, 114, 113fovrnd 6428 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  /\  k  e.  ( N  \  { s } ) )  -> 
( ( P `  k ) M k )  e.  ( Base `  R ) )
116115ralrimiva 2818 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  A. k  e.  ( N  \  {
s } ) ( ( P `  k
) M k )  e.  ( Base `  R
) )
11733, 105, 109, 116gsummptcl 17315 . . . . . . . . . . . 12  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  P  e.  H
)  ->  ( G  gsumg  ( k  e.  ( N 
\  { s } )  |->  ( ( P `
 k ) M k ) ) )  e.  ( Base `  R
) )
118117ad2ant2r 745 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( G  gsumg  ( k  e.  ( N  \  { s } )  |->  ( ( P `  k ) M k ) ) )  e.  ( Base `  R ) )
119 mdetdiag.0 . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  R )
12027, 20, 119ringlz 17555 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  ( G  gsumg  ( k  e.  ( N  \  { s } )  |->  ( ( P `  k ) M k ) ) )  e.  ( Base `  R ) )  -> 
(  .0.  ( .r
`  R ) ( G  gsumg  ( k  e.  ( N  \  { s } )  |->  ( ( P `  k ) M k ) ) ) )  =  .0.  )
121104, 118, 120syl2anc 659 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  (  .0.  ( .r `  R
) ( G  gsumg  ( k  e.  ( N  \  { s } ) 
|->  ( ( P `  k ) M k ) ) ) )  =  .0.  )
12259, 102, 1213eqtrd 2447 . . . . . . . . 9  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  ( P  e.  H  /\  s  e.  dom  ( P  \  _I  )
) )  ->  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) )  =  .0.  )
123122expr 613 . . . . . . . 8  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  ( s  e.  dom  ( P  \  _I  )  ->  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) )  =  .0.  ) )
124123exlimdv 1745 . . . . . . 7  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  ( E. s  s  e.  dom  ( P 
\  _I  )  -> 
( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) )  =  .0.  ) )
12517, 124syl5bi 217 . . . . . 6  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  ( dom  ( P 
\  _I  )  =/=  (/)  ->  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) )  =  .0.  )
)
12616, 125sylbid 215 . . . . 5  |-  ( ( ( ( R  e. 
CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) )  /\  P  e.  H )  ->  ( P  =/=  (  _I  |`  N )  -> 
( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) )  =  .0.  ) )
127126expimpd 601 . . . 4  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )
)  ->  ( ( P  e.  H  /\  P  =/=  (  _I  |`  N ) )  ->  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k
) M k ) ) )  =  .0.  ) )
1281273impia 1194 . . 3  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k
) M k ) ) )  =  .0.  )
1296, 128oveq12d 6296 . 2  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  ( (
( Z  o.  S
) `  P )  .x.  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) ) )  =  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  P )  .x.  .0.  ) )
130 3simpa 994 . . . 4  |-  ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  ->  ( R  e.  CRing  /\  N  e.  Fin ) )
131 simpl 455 . . . 4  |-  ( ( P  e.  H  /\  P  =/=  (  _I  |`  N ) )  ->  P  e.  H )
13260ad2antrr 724 . . . . 5  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin )  /\  P  e.  H
)  ->  R  e.  Ring )
133 zrhpsgnmhm 18918 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  N  e.  Fin )  ->  (
( ZRHom `  R
)  o.  (pmSgn `  N ) )  e.  ( ( SymGrp `  N
) MndHom  (mulGrp `  R )
) )
13460, 133sylan 469 . . . . . . 7  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  (
( ZRHom `  R
)  o.  (pmSgn `  N ) )  e.  ( ( SymGrp `  N
) MndHom  (mulGrp `  R )
) )
135 eqid 2402 . . . . . . . 8  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
1368, 135mhmf 16295 . . . . . . 7  |-  ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) )  e.  ( ( SymGrp `  N
) MndHom  (mulGrp `  R )
)  ->  ( ( ZRHom `  R )  o.  (pmSgn `  N )
) : H --> ( Base `  (mulGrp `  R )
) )
137134, 136syl 17 . . . . . 6  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  (
( ZRHom `  R
)  o.  (pmSgn `  N ) ) : H --> ( Base `  (mulGrp `  R ) ) )
138137ffvelrnda 6009 . . . . 5  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin )  /\  P  e.  H
)  ->  ( (
( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  P )  e.  (
Base `  (mulGrp `  R
) ) )
139 eqid 2402 . . . . . . . 8  |-  (mulGrp `  R )  =  (mulGrp `  R )
140139, 27mgpbas 17467 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  (mulGrp `  R
) )
141140eqcomi 2415 . . . . . 6  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  R )
142 mdetdiaglem.t . . . . . 6  |-  .x.  =  ( .r `  R )
143141, 142, 119ringrz 17556 . . . . 5  |-  ( ( R  e.  Ring  /\  (
( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  P )  e.  (
Base `  (mulGrp `  R
) ) )  -> 
( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  P )  .x.  .0.  )  =  .0.  )
144132, 138, 143syl2anc 659 . . . 4  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin )  /\  P  e.  H
)  ->  ( (
( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  P )  .x.  .0.  )  =  .0.  )
145130, 131, 144syl2an 475 . . 3  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  ( (
( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  P )  .x.  .0.  )  =  .0.  )
1461453adant2 1016 . 2  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  ( (
( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  P )  .x.  .0.  )  =  .0.  )
147129, 146eqtrd 2443 1  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin  /\  M  e.  B )  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  )  /\  ( P  e.  H  /\  P  =/=  (  _I  |`  N ) ) )  ->  ( (
( Z  o.  S
) `  P )  .x.  ( G  gsumg  ( k  e.  N  |->  ( ( P `  k ) M k ) ) ) )  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405   E.wex 1633    e. wcel 1842    =/= wne 2598   A.wral 2754   _Vcvv 3059    \ cdif 3411    u. cun 3412    i^i cin 3413    C_ wss 3414   (/)c0 3738   {csn 3972    |-> cmpt 4453    _I cid 4733    X. cxp 4821   dom cdm 4823    |` cres 4825    o. ccom 4827    Fn wfn 5564   -->wf 5565   -1-1-onto->wf1o 5568   ` cfv 5569  (class class class)co 6278    ^m cmap 7457   Fincfn 7554   Basecbs 14841   .rcmulr 14910   0gc0g 15054    gsumg cgsu 15055   Mndcmnd 16243   MndHom cmhm 16288   SymGrpcsymg 16726  pmSgncpsgn 16838  CMndccmn 17122  mulGrpcmgp 17461   Ringcrg 17518   CRingccrg 17519   ZRHomczrh 18837   Mat cmat 19201   maDet cmdat 19378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-addf 9601  ax-mulf 9602
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-xor 1367  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-ot 3981  df-uni 4192  df-int 4228  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-om 6684  df-1st 6784  df-2nd 6785  df-supp 6903  df-tpos 6958  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-2o 7168  df-oadd 7171  df-er 7348  df-map 7459  df-ixp 7508  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fsupp 7864  df-sup 7935  df-oi 7969  df-card 8352  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-5 10638  df-6 10639  df-7 10640  df-8 10641  df-9 10642  df-10 10643  df-n0 10837  df-z 10906  df-dec 11020  df-uz 11128  df-rp 11266  df-fz 11727  df-fzo 11855  df-seq 12152  df-exp 12211  df-hash 12453  df-word 12591  df-lsw 12592  df-concat 12593  df-s1 12594  df-substr 12595  df-splice 12596  df-reverse 12597  df-s2 12869  df-struct 14843  df-ndx 14844  df-slot 14845  df-base 14846  df-sets 14847  df-ress 14848  df-plusg 14922  df-mulr 14923  df-starv 14924  df-sca 14925  df-vsca 14926  df-ip 14927  df-tset 14928  df-ple 14929  df-ds 14931  df-unif 14932  df-hom 14933  df-cco 14934  df-0g 15056  df-gsum 15057  df-prds 15062  df-pws 15064  df-mre 15200  df-mrc 15201  df-acs 15203  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-mhm 16290  df-submnd 16291  df-grp 16381  df-minusg 16382  df-mulg 16384  df-subg 16522  df-ghm 16589  df-gim 16631  df-cntz 16679  df-oppg 16705  df-symg 16727  df-pmtr 16791  df-psgn 16840  df-cmn 17124  df-abl 17125  df-mgp 17462  df-ur 17474  df-ring 17520  df-cring 17521  df-oppr 17592  df-dvdsr 17610  df-unit 17611  df-invr 17641  df-dvr 17652  df-rnghom 17684  df-drng 17718  df-subrg 17747  df-sra 18138  df-rgmod 18139  df-cnfld 18741  df-zring 18809  df-zrh 18841  df-dsmm 19061  df-frlm 19076  df-mat 19202
This theorem is referenced by:  mdetdiag  19393
  Copyright terms: Public domain W3C validator