MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdet1 Structured version   Unicode version

Theorem mdet1 18525
Description: The determinant of the identity matrix is 1, i.e. the determinant function is normalized, see also definition in [Lang] p. 513. (Contributed by SO, 10-Jul-2018.) (Proof shortened by AV, 25-Nov-2019.)
Hypotheses
Ref Expression
mdet1.d  |-  D  =  ( N maDet  R )
mdet1.a  |-  A  =  ( N Mat  R )
mdet1.n  |-  I  =  ( 1r `  A
)
mdet1.o  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
mdet1  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  ( D `  I )  =  .1.  )

Proof of Theorem mdet1
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  ( R  e.  CRing  /\  N  e.  Fin ) )
2 crngrng 16763 . . . . . . 7  |-  ( R  e.  CRing  ->  R  e.  Ring )
32anim1i 568 . . . . . 6  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  ( R  e.  Ring  /\  N  e.  Fin ) )
43ancomd 451 . . . . 5  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  ( N  e.  Fin  /\  R  e.  Ring ) )
5 mdet1.a . . . . . 6  |-  A  =  ( N Mat  R )
65matrng 18442 . . . . 5  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  A  e.  Ring )
7 eqid 2451 . . . . . 6  |-  ( Base `  A )  =  (
Base `  A )
8 mdet1.n . . . . . 6  |-  I  =  ( 1r `  A
)
97, 8rngidcl 16773 . . . . 5  |-  ( A  e.  Ring  ->  I  e.  ( Base `  A
) )
104, 6, 93syl 20 . . . 4  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  I  e.  ( Base `  A
) )
11 eqid 2451 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
12 mdet1.o . . . . . . 7  |-  .1.  =  ( 1r `  R )
1311, 12rngidcl 16773 . . . . . 6  |-  ( R  e.  Ring  ->  .1.  e.  ( Base `  R )
)
142, 13syl 16 . . . . 5  |-  ( R  e.  CRing  ->  .1.  e.  ( Base `  R )
)
1514adantr 465 . . . 4  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  .1.  e.  ( Base `  R
) )
161, 10, 15jca32 535 . . 3  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  (
( R  e.  CRing  /\  N  e.  Fin )  /\  ( I  e.  (
Base `  A )  /\  .1.  e.  ( Base `  R ) ) ) )
17 eqid 2451 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
18 simplr 754 . . . . 5  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  N  e.  Fin )
192adantr 465 . . . . . 6  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  R  e.  Ring )
2019adantr 465 . . . . 5  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  R  e.  Ring )
21 simprl 755 . . . . 5  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  i  e.  N )
22 simprr 756 . . . . 5  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  j  e.  N )
235, 12, 17, 18, 20, 21, 22, 8mat1ov 18448 . . . 4  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  (
i I j )  =  if ( i  =  j ,  .1.  ,  ( 0g `  R
) ) )
2423ralrimivva 2906 . . 3  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  A. i  e.  N  A. j  e.  N  ( i
I j )  =  if ( i  =  j ,  .1.  , 
( 0g `  R
) ) )
25 mdet1.d . . . 4  |-  D  =  ( N maDet  R )
26 eqid 2451 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
27 eqid 2451 . . . 4  |-  (.g `  (mulGrp `  R ) )  =  (.g `  (mulGrp `  R
) )
2825, 5, 7, 26, 17, 11, 27mdetdiagid 18524 . . 3  |-  ( ( ( R  e.  CRing  /\  N  e.  Fin )  /\  ( I  e.  (
Base `  A )  /\  .1.  e.  ( Base `  R ) ) )  ->  ( A. i  e.  N  A. j  e.  N  ( i
I j )  =  if ( i  =  j ,  .1.  , 
( 0g `  R
) )  ->  ( D `  I )  =  ( ( # `  N ) (.g `  (mulGrp `  R ) )  .1.  ) ) )
2916, 24, 28sylc 60 . 2  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  ( D `  I )  =  ( ( # `  N ) (.g `  (mulGrp `  R ) )  .1.  ) )
30 rngsrg 16791 . . . 4  |-  ( R  e.  Ring  ->  R  e. SRing
)
312, 30syl 16 . . 3  |-  ( R  e.  CRing  ->  R  e. SRing )
32 hashcl 12229 . . 3  |-  ( N  e.  Fin  ->  ( # `
 N )  e. 
NN0 )
3326, 27, 12srg1expzeq1 16745 . . 3  |-  ( ( R  e. SRing  /\  ( # `
 N )  e. 
NN0 )  ->  (
( # `  N ) (.g `  (mulGrp `  R
) )  .1.  )  =  .1.  )
3431, 32, 33syl2an 477 . 2  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  (
( # `  N ) (.g `  (mulGrp `  R
) )  .1.  )  =  .1.  )
3529, 34eqtrd 2492 1  |-  ( ( R  e.  CRing  /\  N  e.  Fin )  ->  ( D `  I )  =  .1.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   ifcif 3891   ` cfv 5518  (class class class)co 6192   Fincfn 7412   NN0cn0 10682   #chash 12206   Basecbs 14278   0gc0g 14482  .gcmg 15518  mulGrpcmgp 16698   1rcur 16710  SRingcsrg 16714   Ringcrg 16753   CRingccrg 16754   Mat cmat 18391   maDet cmdat 18508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-inf2 7950  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462  ax-addf 9464  ax-mulf 9465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-xor 1352  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-ot 3986  df-uni 4192  df-int 4229  df-iun 4273  df-iin 4274  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-isom 5527  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-of 6422  df-om 6579  df-1st 6679  df-2nd 6680  df-supp 6793  df-tpos 6847  df-recs 6934  df-rdg 6968  df-1o 7022  df-2o 7023  df-oadd 7026  df-er 7203  df-map 7318  df-ixp 7366  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-fsupp 7724  df-sup 7794  df-oi 7827  df-card 8212  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-div 10097  df-nn 10426  df-2 10483  df-3 10484  df-4 10485  df-5 10486  df-6 10487  df-7 10488  df-8 10489  df-9 10490  df-10 10491  df-n0 10683  df-z 10750  df-dec 10859  df-uz 10965  df-rp 11095  df-fz 11541  df-fzo 11652  df-seq 11910  df-exp 11969  df-hash 12207  df-word 12333  df-concat 12335  df-s1 12336  df-substr 12337  df-splice 12338  df-reverse 12339  df-s2 12579  df-struct 14280  df-ndx 14281  df-slot 14282  df-base 14283  df-sets 14284  df-ress 14285  df-plusg 14355  df-mulr 14356  df-starv 14357  df-sca 14358  df-vsca 14359  df-ip 14360  df-tset 14361  df-ple 14362  df-ds 14364  df-unif 14365  df-hom 14366  df-cco 14367  df-0g 14484  df-gsum 14485  df-prds 14490  df-pws 14492  df-mre 14628  df-mrc 14629  df-acs 14631  df-mnd 15519  df-mhm 15568  df-submnd 15569  df-grp 15649  df-minusg 15650  df-sbg 15651  df-mulg 15652  df-subg 15782  df-ghm 15849  df-gim 15891  df-cntz 15939  df-oppg 15965  df-symg 15987  df-pmtr 16052  df-psgn 16101  df-cmn 16385  df-abl 16386  df-mgp 16699  df-ur 16711  df-srg 16715  df-rng 16755  df-cring 16756  df-oppr 16823  df-dvdsr 16841  df-unit 16842  df-invr 16872  df-dvr 16883  df-rnghom 16914  df-drng 16942  df-subrg 16971  df-lmod 17058  df-lss 17122  df-sra 17361  df-rgmod 17362  df-cnfld 17930  df-zring 17995  df-zrh 18046  df-dsmm 18268  df-frlm 18283  df-mamu 18392  df-mat 18393  df-mdet 18509
This theorem is referenced by:  mdetuni0  18545  matunit  18602  cramerimplem1  18607
  Copyright terms: Public domain W3C validator