MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdet0pr Structured version   Unicode version

Theorem mdet0pr 18401
Description: The determinant for 0-dimensional matrices is a singleton containing an ordered pair with the singleton containing the empty set as first component, and the singleton containing the 1 element of the underlying ring as second component. (Contributed by AV, 28-Feb-2019.)
Assertion
Ref Expression
mdet0pr  |-  ( R  e.  Ring  ->  ( (/) maDet  R )  =  { <. (/)
,  ( 1r `  R ) >. } )

Proof of Theorem mdet0pr
Dummy variables  m  p  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2441 . . . 4  |-  ( (/) maDet  R )  =  ( (/) maDet  R )
2 eqid 2441 . . . 4  |-  ( (/) Mat  R )  =  ( (/) Mat  R )
3 eqid 2441 . . . 4  |-  ( Base `  ( (/) Mat  R )
)  =  ( Base `  ( (/) Mat  R )
)
4 eqid 2441 . . . 4  |-  ( Base `  ( SymGrp `  (/) ) )  =  ( Base `  ( SymGrp `
 (/) ) )
5 eqid 2441 . . . 4  |-  ( ZRHom `  R )  =  ( ZRHom `  R )
6 eqid 2441 . . . 4  |-  (pmSgn `  (/) )  =  (pmSgn `  (/) )
7 eqid 2441 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
8 eqid 2441 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
91, 2, 3, 4, 5, 6, 7, 8mdetfval 18395 . . 3  |-  ( (/) maDet  R )  =  ( m  e.  ( Base `  ( (/) Mat  R ) )  |->  ( R  gsumg  ( p  e.  (
Base `  ( SymGrp `  (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) m x ) ) ) ) ) ) )
109a1i 11 . 2  |-  ( R  e.  Ring  ->  ( (/) maDet  R )  =  ( m  e.  ( Base `  ( (/) Mat  R ) )  |->  ( R  gsumg  ( p  e.  (
Base `  ( SymGrp `  (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) m x ) ) ) ) ) ) ) )
11 mat0dimbas0 18323 . . 3  |-  ( R  e.  Ring  ->  ( Base `  ( (/) Mat  R )
)  =  { (/) } )
1211mpteq1d 4371 . 2  |-  ( R  e.  Ring  ->  ( m  e.  ( Base `  ( (/) Mat  R ) )  |->  ( R  gsumg  ( p  e.  (
Base `  ( SymGrp `  (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) m x ) ) ) ) ) ) )  =  ( m  e.  { (/)
}  |->  ( R  gsumg  ( p  e.  ( Base `  ( SymGrp `
 (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) m x ) ) ) ) ) ) ) )
13 0ex 4420 . . . . 5  |-  (/)  e.  _V
1413a1i 11 . . . 4  |-  ( R  e.  Ring  ->  (/)  e.  _V )
15 ovex 6114 . . . 4  |-  ( R 
gsumg  ( p  e.  ( Base `  ( SymGrp `  (/) ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `
 p ) ( .r `  R ) ( (mulGrp `  R
)  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) ) ) ) )  e.  _V
16 oveq 6095 . . . . . . . . . 10  |-  ( m  =  (/)  ->  ( ( p `  x ) m x )  =  ( ( p `  x ) (/) x ) )
1716mpteq2dv 4377 . . . . . . . . 9  |-  ( m  =  (/)  ->  ( x  e.  (/)  |->  ( ( p `
 x ) m x ) )  =  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) )
1817oveq2d 6105 . . . . . . . 8  |-  ( m  =  (/)  ->  ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) m x ) ) )  =  ( (mulGrp `  R
)  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) ) )
1918oveq2d 6105 . . . . . . 7  |-  ( m  =  (/)  ->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) m x ) ) ) )  =  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) ) ) )
2019mpteq2dv 4377 . . . . . 6  |-  ( m  =  (/)  ->  ( p  e.  ( Base `  ( SymGrp `
 (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) m x ) ) ) ) )  =  ( p  e.  ( Base `  ( SymGrp `
 (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) ) ) ) )
2120oveq2d 6105 . . . . 5  |-  ( m  =  (/)  ->  ( R 
gsumg  ( p  e.  ( Base `  ( SymGrp `  (/) ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `
 p ) ( .r `  R ) ( (mulGrp `  R
)  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) m x ) ) ) ) ) )  =  ( R  gsumg  ( p  e.  (
Base `  ( SymGrp `  (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) ) ) ) ) )
2221fmptsng 5898 . . . 4  |-  ( (
(/)  e.  _V  /\  ( R  gsumg  ( p  e.  (
Base `  ( SymGrp `  (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) ) ) ) )  e.  _V )  ->  { <. (/) ,  ( R 
gsumg  ( p  e.  ( Base `  ( SymGrp `  (/) ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `
 p ) ( .r `  R ) ( (mulGrp `  R
)  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) ) ) ) ) >. }  =  ( m  e.  { (/) } 
|->  ( R  gsumg  ( p  e.  (
Base `  ( SymGrp `  (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) m x ) ) ) ) ) ) ) )
2314, 15, 22sylancl 662 . . 3  |-  ( R  e.  Ring  ->  { <. (/)
,  ( R  gsumg  ( p  e.  ( Base `  ( SymGrp `
 (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) ) ) ) ) >. }  =  ( m  e.  { (/) } 
|->  ( R  gsumg  ( p  e.  (
Base `  ( SymGrp `  (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) m x ) ) ) ) ) ) ) )
24 mpt0 5536 . . . . . . . . . . . 12  |-  ( x  e.  (/)  |->  ( ( p `
 x ) (/) x ) )  =  (/)
2524a1i 11 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  ( x  e.  (/)  |->  ( ( p `
 x ) (/) x ) )  =  (/) )
2625oveq2d 6105 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) )  =  ( (mulGrp `  R )  gsumg  (/) ) )
27 eqid 2441 . . . . . . . . . . 11  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
2827gsum0 15508 . . . . . . . . . 10  |-  ( (mulGrp `  R )  gsumg  (/) )  =  ( 0g `  (mulGrp `  R
) )
2926, 28syl6eq 2489 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) )  =  ( 0g `  (mulGrp `  R ) ) )
3029oveq2d 6105 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) ) )  =  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `
 p ) ( .r `  R ) ( 0g `  (mulGrp `  R ) ) ) )
3130mpteq2dv 4377 . . . . . . 7  |-  ( R  e.  Ring  ->  ( p  e.  ( Base `  ( SymGrp `
 (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) ) ) )  =  ( p  e.  ( Base `  ( SymGrp `
 (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( 0g
`  (mulGrp `  R )
) ) ) )
3231oveq2d 6105 . . . . . 6  |-  ( R  e.  Ring  ->  ( R 
gsumg  ( p  e.  ( Base `  ( SymGrp `  (/) ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `
 p ) ( .r `  R ) ( (mulGrp `  R
)  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) ) ) ) )  =  ( R 
gsumg  ( p  e.  ( Base `  ( SymGrp `  (/) ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `
 p ) ( .r `  R ) ( 0g `  (mulGrp `  R ) ) ) ) ) )
33 eqid 2441 . . . . . . . . . . . . 13  |-  ( 1r
`  R )  =  ( 1r `  R
)
348, 33rngidval 16603 . . . . . . . . . . . 12  |-  ( 1r
`  R )  =  ( 0g `  (mulGrp `  R ) )
3534eqcomi 2445 . . . . . . . . . . 11  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 1r
`  R )
3635a1i 11 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  p  e.  ( Base `  ( SymGrp `
 (/) ) ) )  ->  ( 0g `  (mulGrp `  R ) )  =  ( 1r `  R ) )
3736oveq2d 6105 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  p  e.  ( Base `  ( SymGrp `
 (/) ) ) )  ->  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( 0g
`  (mulGrp `  R )
) )  =  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( 1r
`  R ) ) )
38 0fin 7538 . . . . . . . . . . 11  |-  (/)  e.  Fin
394, 6, 5zrhcopsgnelbas 18023 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (/)  e.  Fin  /\  p  e.  ( Base `  ( SymGrp `  (/) ) ) )  ->  ( (
( ZRHom `  R
)  o.  (pmSgn `  (/) ) ) `  p
)  e.  ( Base `  R ) )
4038, 39mp3an2 1302 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  p  e.  ( Base `  ( SymGrp `
 (/) ) ) )  ->  ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `
 p )  e.  ( Base `  R
) )
41 eqid 2441 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
4241, 7, 33rngridm 16667 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
)  e.  ( Base `  R ) )  -> 
( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `
 p ) ( .r `  R ) ( 1r `  R
) )  =  ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) )
4340, 42syldan 470 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  p  e.  ( Base `  ( SymGrp `
 (/) ) ) )  ->  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( 1r
`  R ) )  =  ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `
 p ) )
4437, 43eqtrd 2473 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  p  e.  ( Base `  ( SymGrp `
 (/) ) ) )  ->  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( 0g
`  (mulGrp `  R )
) )  =  ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) )
4544mpteq2dva 4376 . . . . . . 7  |-  ( R  e.  Ring  ->  ( p  e.  ( Base `  ( SymGrp `
 (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( 0g
`  (mulGrp `  R )
) ) )  =  ( p  e.  (
Base `  ( SymGrp `  (/) ) )  |->  ( ( ( ZRHom `  R
)  o.  (pmSgn `  (/) ) ) `  p
) ) )
4645oveq2d 6105 . . . . . 6  |-  ( R  e.  Ring  ->  ( R 
gsumg  ( p  e.  ( Base `  ( SymGrp `  (/) ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `
 p ) ( .r `  R ) ( 0g `  (mulGrp `  R ) ) ) ) )  =  ( R  gsumg  ( p  e.  (
Base `  ( SymGrp `  (/) ) )  |->  ( ( ( ZRHom `  R
)  o.  (pmSgn `  (/) ) ) `  p
) ) ) )
47 simpl 457 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  p  e.  ( Base `  ( SymGrp `
 (/) ) ) )  ->  R  e.  Ring )
4838a1i 11 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  p  e.  ( Base `  ( SymGrp `
 (/) ) ) )  ->  (/)  e.  Fin )
49 simpr 461 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  p  e.  ( Base `  ( SymGrp `
 (/) ) ) )  ->  p  e.  (
Base `  ( SymGrp `  (/) ) ) )
50 elsni 3900 . . . . . . . . . . . . . 14  |-  ( p  e.  { (/) }  ->  p  =  (/) )
51 fveq2 5689 . . . . . . . . . . . . . . 15  |-  ( p  =  (/)  ->  ( (pmSgn `  (/) ) `  p
)  =  ( (pmSgn `  (/) ) `  (/) ) )
52 psgn0fv0 16015 . . . . . . . . . . . . . . 15  |-  ( (pmSgn `  (/) ) `  (/) )  =  1
5351, 52syl6eq 2489 . . . . . . . . . . . . . 14  |-  ( p  =  (/)  ->  ( (pmSgn `  (/) ) `  p
)  =  1 )
5450, 53syl 16 . . . . . . . . . . . . 13  |-  ( p  e.  { (/) }  ->  ( (pmSgn `  (/) ) `  p )  =  1 )
55 symgbas0 15897 . . . . . . . . . . . . 13  |-  ( Base `  ( SymGrp `  (/) ) )  =  { (/) }
5654, 55eleq2s 2533 . . . . . . . . . . . 12  |-  ( p  e.  ( Base `  ( SymGrp `
 (/) ) )  -> 
( (pmSgn `  (/) ) `  p )  =  1 )
5756adantl 466 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  p  e.  ( Base `  ( SymGrp `
 (/) ) ) )  ->  ( (pmSgn `  (/) ) `  p )  =  1 )
58 eqid 2441 . . . . . . . . . . . . 13  |-  ( SymGrp `  (/) )  =  ( SymGrp `
 (/) )
5958, 4, 6psgnevpmb 18015 . . . . . . . . . . . 12  |-  ( (/)  e.  Fin  ->  ( p  e.  (pmEven `  (/) )  <->  ( p  e.  ( Base `  ( SymGrp `
 (/) ) )  /\  ( (pmSgn `  (/) ) `  p )  =  1 ) ) )
6048, 59syl 16 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  p  e.  ( Base `  ( SymGrp `
 (/) ) ) )  ->  ( p  e.  (pmEven `  (/) )  <->  ( p  e.  ( Base `  ( SymGrp `
 (/) ) )  /\  ( (pmSgn `  (/) ) `  p )  =  1 ) ) )
6149, 57, 60mpbir2and 913 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  p  e.  ( Base `  ( SymGrp `
 (/) ) ) )  ->  p  e.  (pmEven `  (/) ) )
625, 6, 33zrhpsgnevpm 18019 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (/)  e.  Fin  /\  p  e.  (pmEven `  (/) ) )  ->  (
( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
)  =  ( 1r
`  R ) )
6347, 48, 61, 62syl3anc 1218 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  p  e.  ( Base `  ( SymGrp `
 (/) ) ) )  ->  ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `
 p )  =  ( 1r `  R
) )
6463mpteq2dva 4376 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( p  e.  ( Base `  ( SymGrp `
 (/) ) )  |->  ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) )  =  ( p  e.  ( Base `  ( SymGrp `  (/) ) ) 
|->  ( 1r `  R
) ) )
6564oveq2d 6105 . . . . . . 7  |-  ( R  e.  Ring  ->  ( R 
gsumg  ( p  e.  ( Base `  ( SymGrp `  (/) ) ) 
|->  ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ) )  =  ( R  gsumg  ( p  e.  (
Base `  ( SymGrp `  (/) ) )  |->  ( 1r
`  R ) ) ) )
6655a1i 11 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( Base `  ( SymGrp `  (/) ) )  =  { (/) } )
6766mpteq1d 4371 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( p  e.  ( Base `  ( SymGrp `
 (/) ) )  |->  ( 1r `  R ) )  =  ( p  e.  { (/) }  |->  ( 1r `  R ) ) )
6867oveq2d 6105 . . . . . . 7  |-  ( R  e.  Ring  ->  ( R 
gsumg  ( p  e.  ( Base `  ( SymGrp `  (/) ) ) 
|->  ( 1r `  R
) ) )  =  ( R  gsumg  ( p  e.  { (/)
}  |->  ( 1r `  R ) ) ) )
69 rngmnd 16652 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
7041, 33rngidcl 16663 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  ( Base `  R
) )
71 eqidd 2442 . . . . . . . . 9  |-  ( p  =  (/)  ->  ( 1r
`  R )  =  ( 1r `  R
) )
7241, 71gsumsn 16447 . . . . . . . 8  |-  ( ( R  e.  Mnd  /\  (/) 
e.  _V  /\  ( 1r `  R )  e.  ( Base `  R
) )  ->  ( R  gsumg  ( p  e.  { (/)
}  |->  ( 1r `  R ) ) )  =  ( 1r `  R ) )
7369, 14, 70, 72syl3anc 1218 . . . . . . 7  |-  ( R  e.  Ring  ->  ( R 
gsumg  ( p  e.  { (/) } 
|->  ( 1r `  R
) ) )  =  ( 1r `  R
) )
7465, 68, 733eqtrd 2477 . . . . . 6  |-  ( R  e.  Ring  ->  ( R 
gsumg  ( p  e.  ( Base `  ( SymGrp `  (/) ) ) 
|->  ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ) )  =  ( 1r `  R
) )
7532, 46, 743eqtrd 2477 . . . . 5  |-  ( R  e.  Ring  ->  ( R 
gsumg  ( p  e.  ( Base `  ( SymGrp `  (/) ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `
 p ) ( .r `  R ) ( (mulGrp `  R
)  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) ) ) ) )  =  ( 1r
`  R ) )
7675opeq2d 4064 . . . 4  |-  ( R  e.  Ring  ->  <. (/) ,  ( R  gsumg  ( p  e.  (
Base `  ( SymGrp `  (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) ) ) ) ) >.  =  <. (/)
,  ( 1r `  R ) >. )
7776sneqd 3887 . . 3  |-  ( R  e.  Ring  ->  { <. (/)
,  ( R  gsumg  ( p  e.  ( Base `  ( SymGrp `
 (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) (/) x ) ) ) ) ) ) >. }  =  { <.
(/) ,  ( 1r `  R ) >. } )
7823, 77eqtr3d 2475 . 2  |-  ( R  e.  Ring  ->  ( m  e.  { (/) }  |->  ( R  gsumg  ( p  e.  (
Base `  ( SymGrp `  (/) ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  (/) ) ) `  p
) ( .r `  R ) ( (mulGrp `  R )  gsumg  ( x  e.  (/)  |->  ( ( p `  x ) m x ) ) ) ) ) ) )  =  { <. (/) ,  ( 1r
`  R ) >. } )
7910, 12, 783eqtrd 2477 1  |-  ( R  e.  Ring  ->  ( (/) maDet  R )  =  { <. (/)
,  ( 1r `  R ) >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2970   (/)c0 3635   {csn 3875   <.cop 3881    e. cmpt 4348    o. ccom 4842   ` cfv 5416  (class class class)co 6089   Fincfn 7308   1c1 9281   Basecbs 14172   .rcmulr 14237   0gc0g 14376    gsumg cgsu 14377   Mndcmnd 15407   SymGrpcsymg 15880  pmSgncpsgn 15993  pmEvencevpm 15994  mulGrpcmgp 16589   1rcur 16601   Ringcrg 16643   ZRHomczrh 17929   Mat cmat 18278   maDet cmdat 18393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-inf2 7845  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-addf 9359  ax-mulf 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-xor 1351  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-ot 3884  df-uni 4090  df-int 4127  df-iun 4171  df-iin 4172  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-se 4678  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-isom 5425  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-1st 6575  df-2nd 6576  df-supp 6689  df-tpos 6743  df-recs 6830  df-rdg 6864  df-1o 6918  df-2o 6919  df-oadd 6922  df-er 7099  df-map 7214  df-ixp 7262  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-fsupp 7619  df-sup 7689  df-oi 7722  df-card 8107  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-div 9992  df-nn 10321  df-2 10378  df-3 10379  df-4 10380  df-5 10381  df-6 10382  df-7 10383  df-8 10384  df-9 10385  df-10 10386  df-n0 10578  df-z 10645  df-dec 10754  df-uz 10860  df-rp 10990  df-fz 11436  df-fzo 11547  df-seq 11805  df-exp 11864  df-hash 12102  df-word 12227  df-concat 12229  df-s1 12230  df-substr 12231  df-splice 12232  df-reverse 12233  df-s2 12473  df-struct 14174  df-ndx 14175  df-slot 14176  df-base 14177  df-sets 14178  df-ress 14179  df-plusg 14249  df-mulr 14250  df-starv 14251  df-sca 14252  df-vsca 14253  df-ip 14254  df-tset 14255  df-ple 14256  df-ds 14258  df-unif 14259  df-hom 14260  df-cco 14261  df-0g 14378  df-gsum 14379  df-prds 14384  df-pws 14386  df-mre 14522  df-mrc 14523  df-acs 14525  df-mnd 15413  df-mhm 15462  df-submnd 15463  df-grp 15543  df-minusg 15544  df-mulg 15546  df-subg 15676  df-ghm 15743  df-gim 15785  df-cntz 15833  df-oppg 15859  df-symg 15881  df-pmtr 15946  df-psgn 15995  df-evpm 15996  df-cmn 16277  df-abl 16278  df-mgp 16590  df-ur 16602  df-rng 16645  df-cring 16646  df-oppr 16713  df-dvdsr 16731  df-unit 16732  df-invr 16762  df-dvr 16773  df-rnghom 16804  df-drng 16832  df-subrg 16861  df-sra 17251  df-rgmod 17252  df-cnfld 17817  df-zring 17882  df-zrh 17933  df-dsmm 18155  df-frlm 18170  df-mat 18280  df-mdet 18394
This theorem is referenced by:  mdet0f1o  18402  mdet0fv0  18403
  Copyright terms: Public domain W3C validator