MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdeglt Structured version   Unicode version

Theorem mdeglt 22338
Description: If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
mdegval.d  |-  D  =  ( I mDeg  R )
mdegval.p  |-  P  =  ( I mPoly  R )
mdegval.b  |-  B  =  ( Base `  P
)
mdegval.z  |-  .0.  =  ( 0g `  R )
mdegval.a  |-  A  =  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }
mdegval.h  |-  H  =  ( h  e.  A  |->  (fld 
gsumg  h ) )
mdeglt.f  |-  ( ph  ->  F  e.  B )
medglt.x  |-  ( ph  ->  X  e.  A )
mdeglt.lt  |-  ( ph  ->  ( D `  F
)  <  ( H `  X ) )
Assertion
Ref Expression
mdeglt  |-  ( ph  ->  ( F `  X
)  =  .0.  )
Distinct variable groups:    A, h    m, I    .0. , h    h, I, m
Allowed substitution hints:    ph( h, m)    A( m)    B( h, m)    D( h, m)    P( h, m)    R( h, m)    F( h, m)    H( h, m)    X( h, m)    .0. ( m)

Proof of Theorem mdeglt
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mdeglt.lt . 2  |-  ( ph  ->  ( D `  F
)  <  ( H `  X ) )
2 medglt.x . . 3  |-  ( ph  ->  X  e.  A )
3 mdeglt.f . . . . . . 7  |-  ( ph  ->  F  e.  B )
4 mdegval.d . . . . . . . 8  |-  D  =  ( I mDeg  R )
5 mdegval.p . . . . . . . 8  |-  P  =  ( I mPoly  R )
6 mdegval.b . . . . . . . 8  |-  B  =  ( Base `  P
)
7 mdegval.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
8 mdegval.a . . . . . . . 8  |-  A  =  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }
9 mdegval.h . . . . . . . 8  |-  H  =  ( h  e.  A  |->  (fld 
gsumg  h ) )
104, 5, 6, 7, 8, 9mdegval 22335 . . . . . . 7  |-  ( F  e.  B  ->  ( D `  F )  =  sup ( ( H
" ( F supp  .0.  ) ) ,  RR* ,  <  ) )
113, 10syl 16 . . . . . 6  |-  ( ph  ->  ( D `  F
)  =  sup (
( H " ( F supp  .0.  ) ) , 
RR* ,  <  ) )
12 imassrn 5338 . . . . . . . 8  |-  ( H
" ( F supp  .0.  ) )  C_  ran  H
135, 6mplrcl 18028 . . . . . . . . . 10  |-  ( F  e.  B  ->  I  e.  _V )
148, 9tdeglem1 22329 . . . . . . . . . 10  |-  ( I  e.  _V  ->  H : A --> NN0 )
15 frn 5727 . . . . . . . . . 10  |-  ( H : A --> NN0  ->  ran 
H  C_  NN0 )
163, 13, 14, 154syl 21 . . . . . . . . 9  |-  ( ph  ->  ran  H  C_  NN0 )
17 nn0ssre 10805 . . . . . . . . . 10  |-  NN0  C_  RR
18 ressxr 9640 . . . . . . . . . 10  |-  RR  C_  RR*
1917, 18sstri 3498 . . . . . . . . 9  |-  NN0  C_  RR*
2016, 19syl6ss 3501 . . . . . . . 8  |-  ( ph  ->  ran  H  C_  RR* )
2112, 20syl5ss 3500 . . . . . . 7  |-  ( ph  ->  ( H " ( F supp  .0.  ) )  C_  RR* )
22 supxrcl 11515 . . . . . . 7  |-  ( ( H " ( F supp 
.0.  ) )  C_  RR* 
->  sup ( ( H
" ( F supp  .0.  ) ) ,  RR* ,  <  )  e.  RR* )
2321, 22syl 16 . . . . . 6  |-  ( ph  ->  sup ( ( H
" ( F supp  .0.  ) ) ,  RR* ,  <  )  e.  RR* )
2411, 23eqeltrd 2531 . . . . 5  |-  ( ph  ->  ( D `  F
)  e.  RR* )
25 xrleid 11365 . . . . 5  |-  ( ( D `  F )  e.  RR*  ->  ( D `
 F )  <_ 
( D `  F
) )
2624, 25syl 16 . . . 4  |-  ( ph  ->  ( D `  F
)  <_  ( D `  F ) )
274, 5, 6, 7, 8, 9mdegleb 22337 . . . . 5  |-  ( ( F  e.  B  /\  ( D `  F )  e.  RR* )  ->  (
( D `  F
)  <_  ( D `  F )  <->  A. x  e.  A  ( ( D `  F )  <  ( H `  x
)  ->  ( F `  x )  =  .0.  ) ) )
283, 24, 27syl2anc 661 . . . 4  |-  ( ph  ->  ( ( D `  F )  <_  ( D `  F )  <->  A. x  e.  A  ( ( D `  F
)  <  ( H `  x )  ->  ( F `  x )  =  .0.  ) ) )
2926, 28mpbid 210 . . 3  |-  ( ph  ->  A. x  e.  A  ( ( D `  F )  <  ( H `  x )  ->  ( F `  x
)  =  .0.  )
)
30 fveq2 5856 . . . . . 6  |-  ( x  =  X  ->  ( H `  x )  =  ( H `  X ) )
3130breq2d 4449 . . . . 5  |-  ( x  =  X  ->  (
( D `  F
)  <  ( H `  x )  <->  ( D `  F )  <  ( H `  X )
) )
32 fveq2 5856 . . . . . 6  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
3332eqeq1d 2445 . . . . 5  |-  ( x  =  X  ->  (
( F `  x
)  =  .0.  <->  ( F `  X )  =  .0.  ) )
3431, 33imbi12d 320 . . . 4  |-  ( x  =  X  ->  (
( ( D `  F )  <  ( H `  x )  ->  ( F `  x
)  =  .0.  )  <->  ( ( D `  F
)  <  ( H `  X )  ->  ( F `  X )  =  .0.  ) ) )
3534rspcva 3194 . . 3  |-  ( ( X  e.  A  /\  A. x  e.  A  ( ( D `  F
)  <  ( H `  x )  ->  ( F `  x )  =  .0.  ) )  -> 
( ( D `  F )  <  ( H `  X )  ->  ( F `  X
)  =  .0.  )
)
362, 29, 35syl2anc 661 . 2  |-  ( ph  ->  ( ( D `  F )  <  ( H `  X )  ->  ( F `  X
)  =  .0.  )
)
371, 36mpd 15 1  |-  ( ph  ->  ( F `  X
)  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1383    e. wcel 1804   A.wral 2793   {crab 2797   _Vcvv 3095    C_ wss 3461   class class class wbr 4437    |-> cmpt 4495   `'ccnv 4988   ran crn 4990   "cima 4992   -->wf 5574   ` cfv 5578  (class class class)co 6281   supp csupp 6903    ^m cmap 7422   Fincfn 7518   supcsup 7902   RRcr 9494   RR*cxr 9630    < clt 9631    <_ cle 9632   NNcn 10542   NN0cn0 10801   Basecbs 14509   0gc0g 14714    gsumg cgsu 14715   mPoly cmpl 17876  ℂfldccnfld 18294   mDeg cmdg 22324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-sup 7903  df-oi 7938  df-card 8323  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-2 10600  df-3 10601  df-4 10602  df-5 10603  df-6 10604  df-7 10605  df-8 10606  df-9 10607  df-10 10608  df-n0 10802  df-z 10871  df-dec 10985  df-uz 11091  df-fz 11682  df-fzo 11804  df-seq 12087  df-hash 12385  df-struct 14511  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-mulr 14588  df-starv 14589  df-sca 14590  df-vsca 14591  df-tset 14593  df-ple 14594  df-ds 14596  df-unif 14597  df-0g 14716  df-gsum 14717  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15841  df-grp 15931  df-minusg 15932  df-cntz 16229  df-cmn 16674  df-abl 16675  df-mgp 17016  df-ur 17028  df-ring 17074  df-cring 17075  df-psr 17879  df-mpl 17881  df-cnfld 18295  df-mdeg 22326
This theorem is referenced by:  mdegaddle  22347  mdegvscale  22348  mdegmullem  22351
  Copyright terms: Public domain W3C validator