Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegle0 Structured version   Visualization version   Unicode version

Theorem mdegle0 23105
 Description: A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
mdegle0.b
mdegle0.a algSc
mdegle0.f
Assertion
Ref Expression
mdegle0

Proof of Theorem mdegle0
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegle0.f . . 3
2 0xr 9705 . . 3
3 mdegaddle.d . . . 4 mDeg
4 mdegaddle.y . . . 4 mPoly
5 mdegle0.b . . . 4
6 eqid 2471 . . . 4
7 eqid 2471 . . . 4
8 eqid 2471 . . . 4 fld g fld g
93, 4, 5, 6, 7, 8mdegleb 23092 . . 3 fld g
101, 2, 9sylancl 675 . 2 fld g
11 mdegaddle.i . . . . . . . . . 10
127, 8tdeglem1 23086 . . . . . . . . . 10 fld g
1311, 12syl 17 . . . . . . . . 9 fld g
1413ffvelrnda 6037 . . . . . . . 8 fld g
15 nn0re 10902 . . . . . . . . 9 fld g fld g
16 nn0ge0 10919 . . . . . . . . 9 fld g fld g
1715, 16jca 541 . . . . . . . 8 fld g fld g fld g
18 ne0gt0 9757 . . . . . . . 8 fld g fld g fld g fld g
1914, 17, 183syl 18 . . . . . . 7 fld g fld g
207, 8tdeglem4 23088 . . . . . . . . 9 fld g
2111, 20sylan 479 . . . . . . . 8 fld g
2221necon3abid 2679 . . . . . . 7 fld g
2319, 22bitr3d 263 . . . . . 6 fld g
2423imbi1d 324 . . . . 5 fld g
25 eqeq2 2482 . . . . . . . 8
2625bibi1d 326 . . . . . . 7
27 eqeq2 2482 . . . . . . . 8
2827bibi1d 326 . . . . . . 7
29 fveq2 5879 . . . . . . . . 9
30 pm2.24 112 . . . . . . . . 9
3129, 302thd 248 . . . . . . . 8
3231adantl 473 . . . . . . 7
33 biimt 342 . . . . . . . 8
3433adantl 473 . . . . . . 7
3526, 28, 32, 34ifbothda 3907 . . . . . 6
3635adantr 472 . . . . 5
3724, 36bitr4d 264 . . . 4 fld g
3837ralbidva 2828 . . 3 fld g
39 eqid 2471 . . . . . . 7
404, 39, 5, 7, 1mplelf 18734 . . . . . 6
4140feqmptd 5932 . . . . 5
42 mdegle0.a . . . . . 6 algSc
43 mdegaddle.r . . . . . 6
447psrbag0 18794 . . . . . . . 8
4511, 44syl 17 . . . . . . 7
4640, 45ffvelrnd 6038 . . . . . 6
474, 7, 6, 39, 42, 11, 43, 46mplascl 18796 . . . . 5
4841, 47eqeq12d 2486 . . . 4
49 fvex 5889 . . . . . 6
5049rgenw 2768 . . . . 5
51 mpteqb 5979 . . . . 5
5250, 51mp1i 13 . . . 4
5348, 52bitrd 261 . . 3
5438, 53bitr4d 264 . 2 fld g
5510, 54bitrd 261 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 189   wa 376   wceq 1452   wcel 1904   wne 2641  wral 2756  crab 2760  cvv 3031  cif 3872  csn 3959   class class class wbr 4395   cmpt 4454   cxp 4837  ccnv 4838  cima 4842  wf 5585  cfv 5589  (class class class)co 6308   cmap 7490  cfn 7587  cr 9556  cc0 9557  cxr 9692   clt 9693   cle 9694  cn 10631  cn0 10893  cbs 15199  c0g 15416   g cgsu 15417  crg 17858  algSccascl 18612   mPoly cmpl 18654  ℂfldccnfld 19047   mDeg cmdg 23081 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-ofr 6551  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-sup 7974  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-fz 11811  df-fzo 11943  df-seq 12252  df-hash 12554  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-0g 15418  df-gsum 15419  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-mhm 16660  df-submnd 16661  df-grp 16751  df-minusg 16752  df-mulg 16754  df-subg 16892  df-ghm 16959  df-cntz 17049  df-cmn 17510  df-abl 17511  df-mgp 17802  df-ur 17814  df-ring 17860  df-cring 17861  df-subrg 18084  df-ascl 18615  df-psr 18657  df-mpl 18659  df-cnfld 19048  df-mdeg 23083 This theorem is referenced by:  deg1le0  23139
 Copyright terms: Public domain W3C validator