HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mddmd2 Structured version   Unicode version

Theorem mddmd2 26754
Description: Relationship between modular pairs and dual-modular pairs. Lemma 1.2 of [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mddmd2  |-  ( A  e.  CH  ->  ( A. x  e.  CH  A  MH  x  <->  A. x  e.  CH  A  MH*  x ) )
Distinct variable group:    x, A

Proof of Theorem mddmd2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq2 4444 . . . . 5  |-  ( x  =  y  ->  ( A  MH  x  <->  A  MH  y ) )
21cbvralv 3081 . . . 4  |-  ( A. x  e.  CH  A  MH  x 
<-> 
A. y  e.  CH  A  MH  y )
3 mdbr 26739 . . . . . 6  |-  ( ( A  e.  CH  /\  y  e.  CH )  ->  ( A  MH  y  <->  A. x  e.  CH  (
x  C_  y  ->  ( ( x  vH  A
)  i^i  y )  =  ( x  vH  ( A  i^i  y
) ) ) ) )
4 incom 3684 . . . . . . . . . . . 12  |-  ( ( A  vH  x )  i^i  y )  =  ( y  i^i  ( A  vH  x ) )
5 chjcom 25950 . . . . . . . . . . . . 13  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( A  vH  x
)  =  ( x  vH  A ) )
65ineq1d 3692 . . . . . . . . . . . 12  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( ( A  vH  x )  i^i  y
)  =  ( ( x  vH  A )  i^i  y ) )
74, 6syl5reqr 2516 . . . . . . . . . . 11  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( ( x  vH  A )  i^i  y
)  =  ( y  i^i  ( A  vH  x ) ) )
87adantlr 714 . . . . . . . . . 10  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( ( x  vH  A )  i^i  y
)  =  ( y  i^i  ( A  vH  x ) ) )
9 incom 3684 . . . . . . . . . . . 12  |-  ( A  i^i  y )  =  ( y  i^i  A
)
109oveq1i 6285 . . . . . . . . . . 11  |-  ( ( A  i^i  y )  vH  x )  =  ( ( y  i^i 
A )  vH  x
)
11 chincl 25943 . . . . . . . . . . . 12  |-  ( ( A  e.  CH  /\  y  e.  CH )  ->  ( A  i^i  y
)  e.  CH )
12 chjcom 25950 . . . . . . . . . . . 12  |-  ( ( ( A  i^i  y
)  e.  CH  /\  x  e.  CH )  ->  ( ( A  i^i  y )  vH  x
)  =  ( x  vH  ( A  i^i  y ) ) )
1311, 12sylan 471 . . . . . . . . . . 11  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( ( A  i^i  y )  vH  x
)  =  ( x  vH  ( A  i^i  y ) ) )
1410, 13syl5reqr 2516 . . . . . . . . . 10  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( x  vH  ( A  i^i  y ) )  =  ( ( y  i^i  A )  vH  x ) )
158, 14eqeq12d 2482 . . . . . . . . 9  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( ( ( x  vH  A )  i^i  y )  =  ( x  vH  ( A  i^i  y ) )  <-> 
( y  i^i  ( A  vH  x ) )  =  ( ( y  i^i  A )  vH  x ) ) )
16 eqcom 2469 . . . . . . . . 9  |-  ( ( y  i^i  ( A  vH  x ) )  =  ( ( y  i^i  A )  vH  x )  <->  ( (
y  i^i  A )  vH  x )  =  ( y  i^i  ( A  vH  x ) ) )
1715, 16syl6bb 261 . . . . . . . 8  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( ( ( x  vH  A )  i^i  y )  =  ( x  vH  ( A  i^i  y ) )  <-> 
( ( y  i^i 
A )  vH  x
)  =  ( y  i^i  ( A  vH  x ) ) ) )
1817imbi2d 316 . . . . . . 7  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( ( x  C_  y  ->  ( ( x  vH  A )  i^i  y )  =  ( x  vH  ( A  i^i  y ) ) )  <->  ( x  C_  y  ->  ( ( y  i^i  A )  vH  x )  =  ( y  i^i  ( A  vH  x ) ) ) ) )
1918ralbidva 2893 . . . . . 6  |-  ( ( A  e.  CH  /\  y  e.  CH )  ->  ( A. x  e. 
CH  ( x  C_  y  ->  ( ( x  vH  A )  i^i  y )  =  ( x  vH  ( A  i^i  y ) ) )  <->  A. x  e.  CH  ( x  C_  y  -> 
( ( y  i^i 
A )  vH  x
)  =  ( y  i^i  ( A  vH  x ) ) ) ) )
203, 19bitrd 253 . . . . 5  |-  ( ( A  e.  CH  /\  y  e.  CH )  ->  ( A  MH  y  <->  A. x  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
2120ralbidva 2893 . . . 4  |-  ( A  e.  CH  ->  ( A. y  e.  CH  A  MH  y  <->  A. y  e.  CH  A. x  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
222, 21syl5bb 257 . . 3  |-  ( A  e.  CH  ->  ( A. x  e.  CH  A  MH  x  <->  A. y  e.  CH  A. x  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
23 ralcom 3015 . . 3  |-  ( A. y  e.  CH  A. x  e.  CH  ( x  C_  y  ->  ( ( y  i^i  A )  vH  x )  =  ( y  i^i  ( A  vH  x ) ) )  <->  A. x  e.  CH  A. y  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) )
2422, 23syl6bb 261 . 2  |-  ( A  e.  CH  ->  ( A. x  e.  CH  A  MH  x  <->  A. x  e.  CH  A. y  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
25 dmdbr 26744 . . 3  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( A  MH*  x  <->  A. y  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
2625ralbidva 2893 . 2  |-  ( A  e.  CH  ->  ( A. x  e.  CH  A  MH*  x  <->  A. x  e.  CH  A. y  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
2724, 26bitr4d 256 1  |-  ( A  e.  CH  ->  ( A. x  e.  CH  A  MH  x  <->  A. x  e.  CH  A  MH*  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807    i^i cin 3468    C_ wss 3469   class class class wbr 4440  (class class class)co 6275   CHcch 25372    vH chj 25376    MH cmd 25409    MH* cdmd 25410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-i2m1 9549  ax-1ne0 9550  ax-rrecex 9553  ax-cnre 9554  ax-hilex 25442  ax-hfvadd 25443  ax-hv0cl 25446  ax-hfvmul 25448
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-recs 7032  df-rdg 7066  df-map 7412  df-nn 10526  df-hlim 25415  df-sh 25650  df-ch 25665  df-chj 25754  df-md 26725  df-dmd 26726
This theorem is referenced by:  atmd  26844
  Copyright terms: Public domain W3C validator