Mathbox for Jarvin Udandy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyvrx6 Structured version   Unicode version

Theorem mdandyvrx6 32320
 Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly (Contributed by Jarvin Udandy, 7-Sep-2016.)
Hypotheses
Ref Expression
mdandyvrx6.1
mdandyvrx6.2
mdandyvrx6.3
mdandyvrx6.4
mdandyvrx6.5
mdandyvrx6.6
Assertion
Ref Expression
mdandyvrx6

Proof of Theorem mdandyvrx6
StepHypRef Expression
1 mdandyvrx6.1 . . . . 5
2 mdandyvrx6.3 . . . . 5
31, 2axorbciffatcxorb 32261 . . . 4
4 mdandyvrx6.2 . . . . 5
5 mdandyvrx6.4 . . . . 5
64, 5axorbciffatcxorb 32261 . . . 4
73, 6pm3.2i 455 . . 3
8 mdandyvrx6.5 . . . 4
94, 8axorbciffatcxorb 32261 . . 3
107, 9pm3.2i 455 . 2
11 mdandyvrx6.6 . . 3
121, 11axorbciffatcxorb 32261 . 2
1310, 12pm3.2i 455 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wa 369   wxo 1363 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 185  df-an 371  df-xor 1364 This theorem is referenced by:  mdandyvrx9  32323
 Copyright terms: Public domain W3C validator