Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyvrx4 Structured version   Unicode version

Theorem mdandyvrx4 32360
Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly (Contributed by Jarvin Udandy, 7-Sep-2016.)
Hypotheses
Ref Expression
mdandyvrx4.1  |-  ( ph  \/_ 
ze )
mdandyvrx4.2  |-  ( ps 
\/_  si )
mdandyvrx4.3  |-  ( ch  <->  ph )
mdandyvrx4.4  |-  ( th  <->  ph )
mdandyvrx4.5  |-  ( ta  <->  ps )
mdandyvrx4.6  |-  ( et  <->  ph )
Assertion
Ref Expression
mdandyvrx4  |-  ( ( ( ( ch  \/_  ze )  /\  ( th 
\/_  ze ) )  /\  ( ta  \/_  si )
)  /\  ( et  \/_  ze ) )

Proof of Theorem mdandyvrx4
StepHypRef Expression
1 mdandyvrx4.1 . . . . 5  |-  ( ph  \/_ 
ze )
2 mdandyvrx4.3 . . . . 5  |-  ( ch  <->  ph )
31, 2axorbciffatcxorb 32303 . . . 4  |-  ( ch 
\/_  ze )
4 mdandyvrx4.4 . . . . 5  |-  ( th  <->  ph )
51, 4axorbciffatcxorb 32303 . . . 4  |-  ( th 
\/_  ze )
63, 5pm3.2i 455 . . 3  |-  ( ( ch  \/_  ze )  /\  ( th  \/_  ze ) )
7 mdandyvrx4.2 . . . 4  |-  ( ps 
\/_  si )
8 mdandyvrx4.5 . . . 4  |-  ( ta  <->  ps )
97, 8axorbciffatcxorb 32303 . . 3  |-  ( ta 
\/_  si )
106, 9pm3.2i 455 . 2  |-  ( ( ( ch  \/_  ze )  /\  ( th  \/_  ze ) )  /\  ( ta  \/_  si ) )
11 mdandyvrx4.6 . . 3  |-  ( et  <->  ph )
121, 11axorbciffatcxorb 32303 . 2  |-  ( et 
\/_  ze )
1310, 12pm3.2i 455 1  |-  ( ( ( ( ch  \/_  ze )  /\  ( th 
\/_  ze ) )  /\  ( ta  \/_  si )
)  /\  ( et  \/_  ze ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    \/_ wxo 1363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-xor 1364
This theorem is referenced by:  mdandyvrx11  32367
  Copyright terms: Public domain W3C validator