Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyv6 Structured version   Unicode version

Theorem mdandyv6 32330
Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly (Contributed by Jarvin Udandy, 6-Sep-2016.)
Hypotheses
Ref Expression
mdandyv6.1  |-  ( ph  <-> F.  )
mdandyv6.2  |-  ( ps  <-> T.  )
mdandyv6.3  |-  ( ch  <-> F.  )
mdandyv6.4  |-  ( th  <-> T.  )
mdandyv6.5  |-  ( ta  <-> T.  )
mdandyv6.6  |-  ( et  <-> F.  )
Assertion
Ref Expression
mdandyv6  |-  ( ( ( ( ch  <->  ph )  /\  ( th  <->  ps ) )  /\  ( ta  <->  ps ) )  /\  ( et  <->  ph ) )

Proof of Theorem mdandyv6
StepHypRef Expression
1 mdandyv6.3 . . . . 5  |-  ( ch  <-> F.  )
2 mdandyv6.1 . . . . 5  |-  ( ph  <-> F.  )
31, 2bothfbothsame 32298 . . . 4  |-  ( ch  <->  ph )
4 mdandyv6.4 . . . . 5  |-  ( th  <-> T.  )
5 mdandyv6.2 . . . . 5  |-  ( ps  <-> T.  )
64, 5bothtbothsame 32297 . . . 4  |-  ( th  <->  ps )
73, 6pm3.2i 455 . . 3  |-  ( ( ch  <->  ph )  /\  ( th 
<->  ps ) )
8 mdandyv6.5 . . . 4  |-  ( ta  <-> T.  )
98, 5bothtbothsame 32297 . . 3  |-  ( ta  <->  ps )
107, 9pm3.2i 455 . 2  |-  ( ( ( ch  <->  ph )  /\  ( th  <->  ps ) )  /\  ( ta  <->  ps ) )
11 mdandyv6.6 . . 3  |-  ( et  <-> F.  )
1211, 2bothfbothsame 32298 . 2  |-  ( et  <->  ph )
1310, 12pm3.2i 455 1  |-  ( ( ( ( ch  <->  ph )  /\  ( th  <->  ps ) )  /\  ( ta  <->  ps ) )  /\  ( et  <->  ph ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369   T. wtru 1396   F. wfal 1400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator