Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfulm Structured version   Visualization version   Unicode version

Theorem mbfulm 23354
 Description: A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim 22619.) (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
mbfulm.z
mbfulm.m
mbfulm.f MblFn
mbfulm.u
Assertion
Ref Expression
mbfulm MblFn

Proof of Theorem mbfulm
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfulm.u . . . 4
2 ulmcl 23329 . . . 4
31, 2syl 17 . . 3
43feqmptd 5916 . 2
5 mbfulm.z . . 3
6 mbfulm.m . . 3
76adantr 467 . . . 4
8 mbfulm.f . . . . . . 7 MblFn
9 ffn 5726 . . . . . . 7 MblFn
108, 9syl 17 . . . . . 6
11 ulmf2 23332 . . . . . 6
1210, 1, 11syl2anc 666 . . . . 5
1312adantr 467 . . . 4
14 simpr 463 . . . 4
15 fvex 5873 . . . . . . 7
165, 15eqeltri 2524 . . . . . 6
1716mptex 6134 . . . . 5
1817a1i 11 . . . 4
19 fveq2 5863 . . . . . . . 8
2019fveq1d 5865 . . . . . . 7
21 eqid 2450 . . . . . . 7
22 fvex 5873 . . . . . . 7
2320, 21, 22fvmpt 5946 . . . . . 6
2423eqcomd 2456 . . . . 5
2524adantl 468 . . . 4
261adantr 467 . . . 4
275, 7, 13, 14, 18, 25, 26ulmclm 23335 . . 3
2812ffvelrnda 6020 . . . . . 6
29 elmapi 7490 . . . . . 6
3028, 29syl 17 . . . . 5
3130feqmptd 5916 . . . 4
328ffvelrnda 6020 . . . 4 MblFn
3331, 32eqeltrrd 2529 . . 3 MblFn
3430ffvelrnda 6020 . . . 4
3534anasss 652 . . 3
365, 6, 27, 33, 35mbflim 22619 . 2 MblFn
374, 36eqeltrd 2528 1 MblFn
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 371   wceq 1443   wcel 1886  cvv 3044   class class class wbr 4401   cmpt 4460   wfn 5576  wf 5577  cfv 5581  (class class class)co 6288   cmap 7469  cc 9534  cz 10934  cuz 11156  MblFncmbf 22565  culm 23324 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-inf2 8143  ax-cc 8862  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-fal 1449  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-disj 4373  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-se 4793  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-of 6528  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-2o 7180  df-oadd 7183  df-omul 7184  df-er 7360  df-map 7471  df-pm 7472  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-sup 7953  df-inf 7954  df-oi 8022  df-card 8370  df-acn 8373  df-cda 8595  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-3 10666  df-n0 10867  df-z 10935  df-uz 11157  df-q 11262  df-rp 11300  df-xadd 11407  df-ioo 11636  df-ioc 11637  df-ico 11638  df-icc 11639  df-fz 11782  df-fzo 11913  df-fl 12025  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13155  df-re 13156  df-im 13157  df-sqrt 13291  df-abs 13292  df-limsup 13519  df-clim 13545  df-rlim 13546  df-sum 13746  df-xmet 18956  df-met 18957  df-ovol 22409  df-vol 22411  df-mbf 22570  df-ulm 23325 This theorem is referenced by:  iblulm  23355
 Copyright terms: Public domain W3C validator