MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfsup Structured version   Unicode version

Theorem mbfsup 22562
Description: The supremum of a sequence of measurable, real-valued functions is measurable. Note that in this and related theorems,  B
( n ,  x
) is a function of both  n and  x, since it is an  n-indexed sequence of functions on  x. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfsup.1  |-  Z  =  ( ZZ>= `  M )
mbfsup.2  |-  G  =  ( x  e.  A  |->  sup ( ran  (
n  e.  Z  |->  B ) ,  RR ,  <  ) )
mbfsup.3  |-  ( ph  ->  M  e.  ZZ )
mbfsup.4  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B )  e. MblFn )
mbfsup.5  |-  ( (
ph  /\  ( n  e.  Z  /\  x  e.  A ) )  ->  B  e.  RR )
mbfsup.6  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  RR  A. n  e.  Z  B  <_  y
)
Assertion
Ref Expression
mbfsup  |-  ( ph  ->  G  e. MblFn )
Distinct variable groups:    x, n, y, A    y, B    ph, n, x, y    n, Z, x, y
Allowed substitution hints:    B( x, n)    G( x, y, n)    M( x, y, n)

Proof of Theorem mbfsup
Dummy variables  m  z  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfsup.5 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  Z  /\  x  e.  A ) )  ->  B  e.  RR )
21anassrs 652 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  Z )  /\  x  e.  A )  ->  B  e.  RR )
32an32s 811 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  B  e.  RR )
4 eqid 2428 . . . . . 6  |-  ( n  e.  Z  |->  B )  =  ( n  e.  Z  |->  B )
53, 4fmptd 6005 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  B ) : Z --> RR )
6 frn 5695 . . . . 5  |-  ( ( n  e.  Z  |->  B ) : Z --> RR  ->  ran  ( n  e.  Z  |->  B )  C_  RR )
75, 6syl 17 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ran  ( n  e.  Z  |->  B )  C_  RR )
8 mbfsup.3 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
9 uzid 11124 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
108, 9syl 17 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
11 mbfsup.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
1210, 11syl6eleqr 2517 . . . . . . . 8  |-  ( ph  ->  M  e.  Z )
1312adantr 466 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  M  e.  Z )
144, 3dmmptd 5669 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  dom  ( n  e.  Z  |->  B )  =  Z )
1513, 14eleqtrrd 2509 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  M  e.  dom  ( n  e.  Z  |->  B ) )
16 ne0i 3710 . . . . . 6  |-  ( M  e.  dom  ( n  e.  Z  |->  B )  ->  dom  ( n  e.  Z  |->  B )  =/=  (/) )
1715, 16syl 17 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  dom  ( n  e.  Z  |->  B )  =/=  (/) )
18 dm0rn0 5013 . . . . . 6  |-  ( dom  ( n  e.  Z  |->  B )  =  (/)  <->  ran  ( n  e.  Z  |->  B )  =  (/) )
1918necon3bii 2653 . . . . 5  |-  ( dom  ( n  e.  Z  |->  B )  =/=  (/)  <->  ran  ( n  e.  Z  |->  B )  =/=  (/) )
2017, 19sylib 199 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ran  ( n  e.  Z  |->  B )  =/=  (/) )
21 mbfsup.6 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  RR  A. n  e.  Z  B  <_  y
)
22 ffn 5689 . . . . . . . . 9  |-  ( ( n  e.  Z  |->  B ) : Z --> RR  ->  ( n  e.  Z  |->  B )  Fn  Z )
235, 22syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  B )  Fn  Z )
24 breq1 4369 . . . . . . . . 9  |-  ( z  =  ( ( n  e.  Z  |->  B ) `
 m )  -> 
( z  <_  y  <->  ( ( n  e.  Z  |->  B ) `  m
)  <_  y )
)
2524ralrn 5984 . . . . . . . 8  |-  ( ( n  e.  Z  |->  B )  Fn  Z  -> 
( A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y  <->  A. m  e.  Z  ( (
n  e.  Z  |->  B ) `  m )  <_  y ) )
2623, 25syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( A. z  e.  ran  ( n  e.  Z  |->  B ) z  <_ 
y  <->  A. m  e.  Z  ( ( n  e.  Z  |->  B ) `  m )  <_  y
) )
27 nffvmpt1 5833 . . . . . . . . . 10  |-  F/_ n
( ( n  e.  Z  |->  B ) `  m )
28 nfcv 2569 . . . . . . . . . 10  |-  F/_ n  <_
29 nfcv 2569 . . . . . . . . . 10  |-  F/_ n
y
3027, 28, 29nfbr 4411 . . . . . . . . 9  |-  F/ n
( ( n  e.  Z  |->  B ) `  m )  <_  y
31 nfv 1755 . . . . . . . . 9  |-  F/ m
( ( n  e.  Z  |->  B ) `  n )  <_  y
32 fveq2 5825 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( n  e.  Z  |->  B ) `  m
)  =  ( ( n  e.  Z  |->  B ) `  n ) )
3332breq1d 4376 . . . . . . . . 9  |-  ( m  =  n  ->  (
( ( n  e.  Z  |->  B ) `  m )  <_  y  <->  ( ( n  e.  Z  |->  B ) `  n
)  <_  y )
)
3430, 31, 33cbvral 2992 . . . . . . . 8  |-  ( A. m  e.  Z  (
( n  e.  Z  |->  B ) `  m
)  <_  y  <->  A. n  e.  Z  ( (
n  e.  Z  |->  B ) `  n )  <_  y )
35 simpr 462 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  n  e.  Z )
364fvmpt2 5917 . . . . . . . . . . 11  |-  ( ( n  e.  Z  /\  B  e.  RR )  ->  ( ( n  e.  Z  |->  B ) `  n )  =  B )
3735, 3, 36syl2anc 665 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( n  e.  Z  |->  B ) `  n
)  =  B )
3837breq1d 4376 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( ( n  e.  Z  |->  B ) `  n )  <_  y  <->  B  <_  y ) )
3938ralbidva 2801 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( A. n  e.  Z  ( ( n  e.  Z  |->  B ) `  n )  <_  y  <->  A. n  e.  Z  B  <_  y ) )
4034, 39syl5bb 260 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( A. m  e.  Z  ( ( n  e.  Z  |->  B ) `  m )  <_  y  <->  A. n  e.  Z  B  <_  y ) )
4126, 40bitrd 256 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( A. z  e.  ran  ( n  e.  Z  |->  B ) z  <_ 
y  <->  A. n  e.  Z  B  <_  y ) )
4241rexbidv 2878 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( E. y  e.  RR  A. z  e.  ran  (
n  e.  Z  |->  B ) z  <_  y  <->  E. y  e.  RR  A. n  e.  Z  B  <_  y ) )
4321, 42mpbird 235 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  RR  A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y )
44 suprcl 10520 . . . 4  |-  ( ( ran  ( n  e.  Z  |->  B )  C_  RR  /\  ran  ( n  e.  Z  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y )  ->  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  e.  RR )
457, 20, 43, 44syl3anc 1264 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  e.  RR )
46 mbfsup.2 . . 3  |-  G  =  ( x  e.  A  |->  sup ( ran  (
n  e.  Z  |->  B ) ,  RR ,  <  ) )
4745, 46fmptd 6005 . 2  |-  ( ph  ->  G : A --> RR )
48 simpr 462 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  x  e.  A )
49 ltso 9665 . . . . . . . . . . . . . 14  |-  <  Or  RR
5049supex 7930 . . . . . . . . . . . . 13  |-  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  e.  _V
5146fvmpt2 5917 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  e.  _V )  -> 
( G `  x
)  =  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  ) )
5248, 50, 51sylancl 666 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( G `  x )  =  sup ( ran  (
n  e.  Z  |->  B ) ,  RR ,  <  ) )
5352breq2d 4378 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  (
t  <  ( G `  x )  <->  t  <  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  ) ) )
547, 20, 433jca 1185 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( ran  ( n  e.  Z  |->  B )  C_  RR  /\ 
ran  ( n  e.  Z  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y ) )
5554adantlr 719 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( ran  ( n  e.  Z  |->  B )  C_  RR  /\ 
ran  ( n  e.  Z  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y ) )
56 simplr 760 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  t  e.  RR )
57 suprlub 10522 . . . . . . . . . . . 12  |-  ( ( ( ran  ( n  e.  Z  |->  B ) 
C_  RR  /\  ran  (
n  e.  Z  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e.  ran  ( n  e.  Z  |->  B ) z  <_  y )  /\  t  e.  RR )  ->  ( t  <  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  <->  E. z  e.  ran  (
n  e.  Z  |->  B ) t  <  z
) )
5855, 56, 57syl2anc 665 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  (
t  <  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  <->  E. z  e.  ran  ( n  e.  Z  |->  B ) t  <  z ) )
5923adantlr 719 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  (
n  e.  Z  |->  B )  Fn  Z )
60 breq2 4370 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( n  e.  Z  |->  B ) `
 m )  -> 
( t  <  z  <->  t  <  ( ( n  e.  Z  |->  B ) `
 m ) ) )
6160rexrn 5983 . . . . . . . . . . . . 13  |-  ( ( n  e.  Z  |->  B )  Fn  Z  -> 
( E. z  e. 
ran  ( n  e.  Z  |->  B ) t  <  z  <->  E. m  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `  m
) ) )
6259, 61syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( E. z  e.  ran  ( n  e.  Z  |->  B ) t  < 
z  <->  E. m  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 m ) ) )
63 nfcv 2569 . . . . . . . . . . . . . . 15  |-  F/_ n
t
64 nfcv 2569 . . . . . . . . . . . . . . 15  |-  F/_ n  <
6563, 64, 27nfbr 4411 . . . . . . . . . . . . . 14  |-  F/ n  t  <  ( ( n  e.  Z  |->  B ) `
 m )
66 nfv 1755 . . . . . . . . . . . . . 14  |-  F/ m  t  <  ( ( n  e.  Z  |->  B ) `
 n )
6732breq2d 4378 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  (
t  <  ( (
n  e.  Z  |->  B ) `  m )  <-> 
t  <  ( (
n  e.  Z  |->  B ) `  n ) ) )
6865, 66, 67cbvrex 2993 . . . . . . . . . . . . 13  |-  ( E. m  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 m )  <->  E. n  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `  n
) )
694fvmpt2i 5916 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  Z  ->  (
( n  e.  Z  |->  B ) `  n
)  =  (  _I 
`  B ) )
70 eqid 2428 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
7170fvmpt2i 5916 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  A  ->  (
( x  e.  A  |->  B ) `  x
)  =  (  _I 
`  B ) )
7271adantl 467 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  (  _I 
`  B ) )
7372eqcomd 2434 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  (  _I  `  B )  =  ( ( x  e.  A  |->  B ) `  x ) )
7469, 73sylan9eqr 2484 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( n  e.  Z  |->  B ) `  n
)  =  ( ( x  e.  A  |->  B ) `  x ) )
7574breq2d 4378 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
t  <  ( (
n  e.  Z  |->  B ) `  n )  <-> 
t  <  ( (
x  e.  A  |->  B ) `  x ) ) )
7675rexbidva 2875 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( E. n  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 n )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) ) )
7776adantlr 719 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( E. n  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 n )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) ) )
7868, 77syl5bb 260 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( E. m  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 m )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) ) )
7962, 78bitrd 256 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( E. z  e.  ran  ( n  e.  Z  |->  B ) t  < 
z  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x ) ) )
8053, 58, 793bitrd 282 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  (
t  <  ( G `  x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) ) )
8180ralrimiva 2779 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR )  ->  A. x  e.  A  ( t  <  ( G `  x
)  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x ) ) )
82 nfv 1755 . . . . . . . . . 10  |-  F/ z ( t  <  ( G `  x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x ) )
83 nfcv 2569 . . . . . . . . . . . 12  |-  F/_ x
t
84 nfcv 2569 . . . . . . . . . . . 12  |-  F/_ x  <
85 nfmpt1 4456 . . . . . . . . . . . . . 14  |-  F/_ x
( x  e.  A  |->  sup ( ran  (
n  e.  Z  |->  B ) ,  RR ,  <  ) )
8646, 85nfcxfr 2567 . . . . . . . . . . . . 13  |-  F/_ x G
87 nfcv 2569 . . . . . . . . . . . . 13  |-  F/_ x
z
8886, 87nffv 5832 . . . . . . . . . . . 12  |-  F/_ x
( G `  z
)
8983, 84, 88nfbr 4411 . . . . . . . . . . 11  |-  F/ x  t  <  ( G `  z )
90 nfcv 2569 . . . . . . . . . . . 12  |-  F/_ x Z
91 nffvmpt1 5833 . . . . . . . . . . . . 13  |-  F/_ x
( ( x  e.  A  |->  B ) `  z )
9283, 84, 91nfbr 4411 . . . . . . . . . . . 12  |-  F/ x  t  <  ( ( x  e.  A  |->  B ) `
 z )
9390, 92nfrex 2827 . . . . . . . . . . 11  |-  F/ x E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z )
9489, 93nfbi 1994 . . . . . . . . . 10  |-  F/ x
( t  <  ( G `  z )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) )
95 fveq2 5825 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
9695breq2d 4378 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
t  <  ( G `  x )  <->  t  <  ( G `  z ) ) )
97 fveq2 5825 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( x  e.  A  |->  B ) `  x
)  =  ( ( x  e.  A  |->  B ) `  z ) )
9897breq2d 4378 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
t  <  ( (
x  e.  A  |->  B ) `  x )  <-> 
t  <  ( (
x  e.  A  |->  B ) `  z ) ) )
9998rexbidv 2878 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  z
) ) )
10096, 99bibi12d 322 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( t  <  ( G `  x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x ) )  <-> 
( t  <  ( G `  z )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) ) )
10182, 94, 100cbvral 2992 . . . . . . . . 9  |-  ( A. x  e.  A  (
t  <  ( G `  x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) )  <->  A. z  e.  A  ( t  <  ( G `  z
)  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) )
10281, 101sylib 199 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR )  ->  A. z  e.  A  ( t  <  ( G `  z
)  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) )
103102r19.21bi 2734 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
t  <  ( G `  z )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  z
) ) )
104 rexr 9637 . . . . . . . . . 10  |-  ( t  e.  RR  ->  t  e.  RR* )
105104ad2antlr 731 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  t  e.  RR* )
106 elioopnf 11679 . . . . . . . . 9  |-  ( t  e.  RR*  ->  ( ( G `  z )  e.  ( t (,) +oo )  <->  ( ( G `
 z )  e.  RR  /\  t  < 
( G `  z
) ) ) )
107105, 106syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
( G `  z
)  e.  ( t (,) +oo )  <->  ( ( G `  z )  e.  RR  /\  t  < 
( G `  z
) ) ) )
10847adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR )  ->  G : A
--> RR )
109108ffvelrnda 5981 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  ( G `  z )  e.  RR )
110109biantrurd 510 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
t  <  ( G `  z )  <->  ( ( G `  z )  e.  RR  /\  t  < 
( G `  z
) ) ) )
111107, 110bitr4d 259 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
( G `  z
)  e.  ( t (,) +oo )  <->  t  <  ( G `  z ) ) )
112105adantr 466 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A
)  /\  n  e.  Z )  ->  t  e.  RR* )
113 elioopnf 11679 . . . . . . . . . 10  |-  ( t  e.  RR*  ->  ( ( ( x  e.  A  |->  B ) `  z
)  e.  ( t (,) +oo )  <->  ( (
( x  e.  A  |->  B ) `  z
)  e.  RR  /\  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) ) )
114112, 113syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A
)  /\  n  e.  Z )  ->  (
( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )  <->  ( ( ( x  e.  A  |->  B ) `  z )  e.  RR  /\  t  <  ( ( x  e.  A  |->  B ) `  z ) ) ) )
1152, 70fmptd 6005 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B ) : A --> RR )
116115ffvelrnda 5981 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  Z )  /\  z  e.  A )  ->  (
( x  e.  A  |->  B ) `  z
)  e.  RR )
117116biantrurd 510 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  Z )  /\  z  e.  A )  ->  (
t  <  ( (
x  e.  A  |->  B ) `  z )  <-> 
( ( ( x  e.  A  |->  B ) `
 z )  e.  RR  /\  t  < 
( ( x  e.  A  |->  B ) `  z ) ) ) )
118117an32s 811 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  A )  /\  n  e.  Z )  ->  (
t  <  ( (
x  e.  A  |->  B ) `  z )  <-> 
( ( ( x  e.  A  |->  B ) `
 z )  e.  RR  /\  t  < 
( ( x  e.  A  |->  B ) `  z ) ) ) )
119118adantllr 723 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A
)  /\  n  e.  Z )  ->  (
t  <  ( (
x  e.  A  |->  B ) `  z )  <-> 
( ( ( x  e.  A  |->  B ) `
 z )  e.  RR  /\  t  < 
( ( x  e.  A  |->  B ) `  z ) ) ) )
120114, 119bitr4d 259 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A
)  /\  n  e.  Z )  ->  (
( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )  <->  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) )
121120rexbidva 2875 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  ( E. n  e.  Z  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) )
122103, 111, 1213bitr4d 288 . . . . . 6  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
( G `  z
)  e.  ( t (,) +oo )  <->  E. n  e.  Z  ( (
x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo ) ) )
123122pm5.32da 645 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  ( ( z  e.  A  /\  ( G `  z )  e.  ( t (,) +oo ) )  <->  ( z  e.  A  /\  E. n  e.  Z  ( (
x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo ) ) ) )
124 ffn 5689 . . . . . . . 8  |-  ( G : A --> RR  ->  G  Fn  A )
12547, 124syl 17 . . . . . . 7  |-  ( ph  ->  G  Fn  A )
126125adantr 466 . . . . . 6  |-  ( (
ph  /\  t  e.  RR )  ->  G  Fn  A )
127 elpreima 5961 . . . . . 6  |-  ( G  Fn  A  ->  (
z  e.  ( `' G " ( t (,) +oo ) )  <-> 
( z  e.  A  /\  ( G `  z
)  e.  ( t (,) +oo ) ) ) )
128126, 127syl 17 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  ( z  e.  ( `' G " ( t (,) +oo ) )  <->  ( z  e.  A  /\  ( G `  z )  e.  ( t (,) +oo ) ) ) )
129 eliun 4247 . . . . . 6  |-  ( z  e.  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) )  <->  E. n  e.  Z  z  e.  ( `' ( x  e.  A  |->  B ) " (
t (,) +oo )
) )
130 ffn 5689 . . . . . . . . . . 11  |-  ( ( x  e.  A  |->  B ) : A --> RR  ->  ( x  e.  A  |->  B )  Fn  A )
131115, 130syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B )  Fn  A )
132 elpreima 5961 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  B )  Fn  A  -> 
( z  e.  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) )  <->  ( z  e.  A  /\  (
( x  e.  A  |->  B ) `  z
)  e.  ( t (,) +oo ) ) ) )
133131, 132syl 17 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  Z )  ->  (
z  e.  ( `' ( x  e.  A  |->  B ) " (
t (,) +oo )
)  <->  ( z  e.  A  /\  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo ) ) ) )
134133rexbidva 2875 . . . . . . . 8  |-  ( ph  ->  ( E. n  e.  Z  z  e.  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) )  <->  E. n  e.  Z  ( z  e.  A  /\  (
( x  e.  A  |->  B ) `  z
)  e.  ( t (,) +oo ) ) ) )
135134adantr 466 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR )  ->  ( E. n  e.  Z  z  e.  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) )  <->  E. n  e.  Z  ( z  e.  A  /\  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )
) ) )
136 r19.42v 2922 . . . . . . 7  |-  ( E. n  e.  Z  ( z  e.  A  /\  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )
)  <->  ( z  e.  A  /\  E. n  e.  Z  ( (
x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo ) ) )
137135, 136syl6bb 264 . . . . . 6  |-  ( (
ph  /\  t  e.  RR )  ->  ( E. n  e.  Z  z  e.  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) )  <-> 
( z  e.  A  /\  E. n  e.  Z  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )
) ) )
138129, 137syl5bb 260 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  ( z  e.  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) )  <-> 
( z  e.  A  /\  E. n  e.  Z  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )
) ) )
139123, 128, 1383bitr4d 288 . . . 4  |-  ( (
ph  /\  t  e.  RR )  ->  ( z  e.  ( `' G " ( t (,) +oo ) )  <->  z  e.  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) ) ) )
140139eqrdv 2426 . . 3  |-  ( (
ph  /\  t  e.  RR )  ->  ( `' G " ( t (,) +oo ) )  =  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) ) )
141 zex 10897 . . . . . . 7  |-  ZZ  e.  _V
142 uzssz 11129 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
143 ssdomg 7569 . . . . . . 7  |-  ( ZZ  e.  _V  ->  (
( ZZ>= `  M )  C_  ZZ  ->  ( ZZ>= `  M )  ~<_  ZZ ) )
144141, 142, 143mp2 9 . . . . . 6  |-  ( ZZ>= `  M )  ~<_  ZZ
14511, 144eqbrtri 4386 . . . . 5  |-  Z  ~<_  ZZ
146 znnen 14208 . . . . 5  |-  ZZ  ~~  NN
147 domentr 7582 . . . . 5  |-  ( ( Z  ~<_  ZZ  /\  ZZ  ~~  NN )  ->  Z  ~<_  NN )
148145, 146, 147mp2an 676 . . . 4  |-  Z  ~<_  NN
149 mbfsup.4 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B )  e. MblFn )
150 mbfima 22530 . . . . . . 7  |-  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  (
x  e.  A  |->  B ) : A --> RR )  ->  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) )  e.  dom  vol )
151149, 115, 150syl2anc 665 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) )  e.  dom  vol )
152151ralrimiva 2779 . . . . 5  |-  ( ph  ->  A. n  e.  Z  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) )  e.  dom  vol )
153152adantr 466 . . . 4  |-  ( (
ph  /\  t  e.  RR )  ->  A. n  e.  Z  ( `' ( x  e.  A  |->  B ) " (
t (,) +oo )
)  e.  dom  vol )
154 iunmbl2 22452 . . . 4  |-  ( ( Z  ~<_  NN  /\  A. n  e.  Z  ( `' ( x  e.  A  |->  B ) " (
t (,) +oo )
)  e.  dom  vol )  ->  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) )  e.  dom  vol )
155148, 153, 154sylancr 667 . . 3  |-  ( (
ph  /\  t  e.  RR )  ->  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) " (
t (,) +oo )
)  e.  dom  vol )
156140, 155eqeltrd 2506 . 2  |-  ( (
ph  /\  t  e.  RR )  ->  ( `' G " ( t (,) +oo ) )  e.  dom  vol )
15747, 156ismbf3d 22552 1  |-  ( ph  ->  G  e. MblFn )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2599   A.wral 2714   E.wrex 2715   _Vcvv 3022    C_ wss 3379   (/)c0 3704   U_ciun 4242   class class class wbr 4366    |-> cmpt 4425    _I cid 4706   `'ccnv 4795   dom cdm 4796   ran crn 4797   "cima 4799    Fn wfn 5539   -->wf 5540   ` cfv 5544  (class class class)co 6249    ~~ cen 7521    ~<_ cdom 7522   supcsup 7907   RRcr 9489   +oocpnf 9623   RR*cxr 9625    < clt 9626    <_ cle 9627   NNcn 10560   ZZcz 10888   ZZ>=cuz 11110   (,)cioo 11586   volcvol 22357  MblFncmbf 22514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-inf2 8099  ax-cc 8816  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-disj 4338  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-of 6489  df-om 6651  df-1st 6751  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-2o 7138  df-oadd 7141  df-omul 7142  df-er 7318  df-map 7429  df-pm 7430  df-en 7525  df-dom 7526  df-sdom 7527  df-fin 7528  df-sup 7909  df-inf 7910  df-oi 7978  df-card 8325  df-acn 8328  df-cda 8549  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-nn 10561  df-2 10619  df-3 10620  df-n0 10821  df-z 10889  df-uz 11111  df-q 11216  df-rp 11254  df-xadd 11361  df-ioo 11590  df-ioc 11591  df-ico 11592  df-icc 11593  df-fz 11736  df-fzo 11867  df-fl 11978  df-seq 12164  df-exp 12223  df-hash 12466  df-cj 13106  df-re 13107  df-im 13108  df-sqrt 13242  df-abs 13243  df-clim 13495  df-rlim 13496  df-sum 13696  df-xmet 18906  df-met 18907  df-ovol 22358  df-vol 22360  df-mbf 22519
This theorem is referenced by:  mbfinf  22563  mbfinfOLD  22564  mbflimsup  22565  mbflimsupOLD  22566
  Copyright terms: Public domain W3C validator