MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfsup Unicode version

Theorem mbfsup 19509
Description: The supremum of a sequence of measurable, real-valued functions is measurable. Note that in this and related theorems,  B
( n ,  x
) is a function of both  n and  x, since it is an  n-indexed sequence of functions on  x. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfsup.1  |-  Z  =  ( ZZ>= `  M )
mbfsup.2  |-  G  =  ( x  e.  A  |->  sup ( ran  (
n  e.  Z  |->  B ) ,  RR ,  <  ) )
mbfsup.3  |-  ( ph  ->  M  e.  ZZ )
mbfsup.4  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B )  e. MblFn )
mbfsup.5  |-  ( (
ph  /\  ( n  e.  Z  /\  x  e.  A ) )  ->  B  e.  RR )
mbfsup.6  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  RR  A. n  e.  Z  B  <_  y
)
Assertion
Ref Expression
mbfsup  |-  ( ph  ->  G  e. MblFn )
Distinct variable groups:    x, n, y, A    y, B    ph, n, x, y    n, Z, x, y
Allowed substitution hints:    B( x, n)    G( x, y, n)    M( x, y, n)

Proof of Theorem mbfsup
Dummy variables  m  z  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfsup.5 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  Z  /\  x  e.  A ) )  ->  B  e.  RR )
21anassrs 630 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  Z )  /\  x  e.  A )  ->  B  e.  RR )
32an32s 780 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  B  e.  RR )
4 eqid 2404 . . . . . 6  |-  ( n  e.  Z  |->  B )  =  ( n  e.  Z  |->  B )
53, 4fmptd 5852 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  B ) : Z --> RR )
6 frn 5556 . . . . 5  |-  ( ( n  e.  Z  |->  B ) : Z --> RR  ->  ran  ( n  e.  Z  |->  B )  C_  RR )
75, 6syl 16 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ran  ( n  e.  Z  |->  B )  C_  RR )
8 mbfsup.3 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
9 uzid 10456 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
108, 9syl 16 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
11 mbfsup.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
1210, 11syl6eleqr 2495 . . . . . . . 8  |-  ( ph  ->  M  e.  Z )
1312adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  M  e.  Z )
14 fdm 5554 . . . . . . . 8  |-  ( ( n  e.  Z  |->  B ) : Z --> RR  ->  dom  ( n  e.  Z  |->  B )  =  Z )
155, 14syl 16 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  dom  ( n  e.  Z  |->  B )  =  Z )
1613, 15eleqtrrd 2481 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  M  e.  dom  ( n  e.  Z  |->  B ) )
17 ne0i 3594 . . . . . 6  |-  ( M  e.  dom  ( n  e.  Z  |->  B )  ->  dom  ( n  e.  Z  |->  B )  =/=  (/) )
1816, 17syl 16 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  dom  ( n  e.  Z  |->  B )  =/=  (/) )
19 dm0rn0 5045 . . . . . 6  |-  ( dom  ( n  e.  Z  |->  B )  =  (/)  <->  ran  ( n  e.  Z  |->  B )  =  (/) )
2019necon3bii 2599 . . . . 5  |-  ( dom  ( n  e.  Z  |->  B )  =/=  (/)  <->  ran  ( n  e.  Z  |->  B )  =/=  (/) )
2118, 20sylib 189 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ran  ( n  e.  Z  |->  B )  =/=  (/) )
22 mbfsup.6 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  RR  A. n  e.  Z  B  <_  y
)
23 ffn 5550 . . . . . . . . 9  |-  ( ( n  e.  Z  |->  B ) : Z --> RR  ->  ( n  e.  Z  |->  B )  Fn  Z )
245, 23syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  B )  Fn  Z )
25 breq1 4175 . . . . . . . . 9  |-  ( z  =  ( ( n  e.  Z  |->  B ) `
 m )  -> 
( z  <_  y  <->  ( ( n  e.  Z  |->  B ) `  m
)  <_  y )
)
2625ralrn 5832 . . . . . . . 8  |-  ( ( n  e.  Z  |->  B )  Fn  Z  -> 
( A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y  <->  A. m  e.  Z  ( (
n  e.  Z  |->  B ) `  m )  <_  y ) )
2724, 26syl 16 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( A. z  e.  ran  ( n  e.  Z  |->  B ) z  <_ 
y  <->  A. m  e.  Z  ( ( n  e.  Z  |->  B ) `  m )  <_  y
) )
28 nffvmpt1 5695 . . . . . . . . . 10  |-  F/_ n
( ( n  e.  Z  |->  B ) `  m )
29 nfcv 2540 . . . . . . . . . 10  |-  F/_ n  <_
30 nfcv 2540 . . . . . . . . . 10  |-  F/_ n
y
3128, 29, 30nfbr 4216 . . . . . . . . 9  |-  F/ n
( ( n  e.  Z  |->  B ) `  m )  <_  y
32 nfv 1626 . . . . . . . . 9  |-  F/ m
( ( n  e.  Z  |->  B ) `  n )  <_  y
33 fveq2 5687 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( n  e.  Z  |->  B ) `  m
)  =  ( ( n  e.  Z  |->  B ) `  n ) )
3433breq1d 4182 . . . . . . . . 9  |-  ( m  =  n  ->  (
( ( n  e.  Z  |->  B ) `  m )  <_  y  <->  ( ( n  e.  Z  |->  B ) `  n
)  <_  y )
)
3531, 32, 34cbvral 2888 . . . . . . . 8  |-  ( A. m  e.  Z  (
( n  e.  Z  |->  B ) `  m
)  <_  y  <->  A. n  e.  Z  ( (
n  e.  Z  |->  B ) `  n )  <_  y )
36 simpr 448 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  n  e.  Z )
374fvmpt2 5771 . . . . . . . . . . 11  |-  ( ( n  e.  Z  /\  B  e.  RR )  ->  ( ( n  e.  Z  |->  B ) `  n )  =  B )
3836, 3, 37syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( n  e.  Z  |->  B ) `  n
)  =  B )
3938breq1d 4182 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( ( n  e.  Z  |->  B ) `  n )  <_  y  <->  B  <_  y ) )
4039ralbidva 2682 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( A. n  e.  Z  ( ( n  e.  Z  |->  B ) `  n )  <_  y  <->  A. n  e.  Z  B  <_  y ) )
4135, 40syl5bb 249 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( A. m  e.  Z  ( ( n  e.  Z  |->  B ) `  m )  <_  y  <->  A. n  e.  Z  B  <_  y ) )
4227, 41bitrd 245 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( A. z  e.  ran  ( n  e.  Z  |->  B ) z  <_ 
y  <->  A. n  e.  Z  B  <_  y ) )
4342rexbidv 2687 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( E. y  e.  RR  A. z  e.  ran  (
n  e.  Z  |->  B ) z  <_  y  <->  E. y  e.  RR  A. n  e.  Z  B  <_  y ) )
4422, 43mpbird 224 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  RR  A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y )
45 suprcl 9924 . . . 4  |-  ( ( ran  ( n  e.  Z  |->  B )  C_  RR  /\  ran  ( n  e.  Z  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y )  ->  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  e.  RR )
467, 21, 44, 45syl3anc 1184 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  e.  RR )
47 mbfsup.2 . . 3  |-  G  =  ( x  e.  A  |->  sup ( ran  (
n  e.  Z  |->  B ) ,  RR ,  <  ) )
4846, 47fmptd 5852 . 2  |-  ( ph  ->  G : A --> RR )
49 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  x  e.  A )
50 ltso 9112 . . . . . . . . . . . . . 14  |-  <  Or  RR
5150supex 7424 . . . . . . . . . . . . 13  |-  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  e.  _V
5247fvmpt2 5771 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  e.  _V )  -> 
( G `  x
)  =  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  ) )
5349, 51, 52sylancl 644 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( G `  x )  =  sup ( ran  (
n  e.  Z  |->  B ) ,  RR ,  <  ) )
5453breq2d 4184 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  (
t  <  ( G `  x )  <->  t  <  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  ) ) )
557, 21, 443jca 1134 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( ran  ( n  e.  Z  |->  B )  C_  RR  /\ 
ran  ( n  e.  Z  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y ) )
5655adantlr 696 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( ran  ( n  e.  Z  |->  B )  C_  RR  /\ 
ran  ( n  e.  Z  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y ) )
57 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  t  e.  RR )
58 suprlub 9926 . . . . . . . . . . . 12  |-  ( ( ( ran  ( n  e.  Z  |->  B ) 
C_  RR  /\  ran  (
n  e.  Z  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e.  ran  ( n  e.  Z  |->  B ) z  <_  y )  /\  t  e.  RR )  ->  ( t  <  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  <->  E. z  e.  ran  (
n  e.  Z  |->  B ) t  <  z
) )
5956, 57, 58syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  (
t  <  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  <->  E. z  e.  ran  ( n  e.  Z  |->  B ) t  <  z ) )
6024adantlr 696 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  (
n  e.  Z  |->  B )  Fn  Z )
61 breq2 4176 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( n  e.  Z  |->  B ) `
 m )  -> 
( t  <  z  <->  t  <  ( ( n  e.  Z  |->  B ) `
 m ) ) )
6261rexrn 5831 . . . . . . . . . . . . 13  |-  ( ( n  e.  Z  |->  B )  Fn  Z  -> 
( E. z  e. 
ran  ( n  e.  Z  |->  B ) t  <  z  <->  E. m  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `  m
) ) )
6360, 62syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( E. z  e.  ran  ( n  e.  Z  |->  B ) t  < 
z  <->  E. m  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 m ) ) )
64 nfcv 2540 . . . . . . . . . . . . . . 15  |-  F/_ n
t
65 nfcv 2540 . . . . . . . . . . . . . . 15  |-  F/_ n  <
6664, 65, 28nfbr 4216 . . . . . . . . . . . . . 14  |-  F/ n  t  <  ( ( n  e.  Z  |->  B ) `
 m )
67 nfv 1626 . . . . . . . . . . . . . 14  |-  F/ m  t  <  ( ( n  e.  Z  |->  B ) `
 n )
6833breq2d 4184 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  (
t  <  ( (
n  e.  Z  |->  B ) `  m )  <-> 
t  <  ( (
n  e.  Z  |->  B ) `  n ) ) )
6966, 67, 68cbvrex 2889 . . . . . . . . . . . . 13  |-  ( E. m  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 m )  <->  E. n  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `  n
) )
704fvmpt2i 5770 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  Z  ->  (
( n  e.  Z  |->  B ) `  n
)  =  (  _I 
`  B ) )
71 eqid 2404 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
7271fvmpt2i 5770 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  A  ->  (
( x  e.  A  |->  B ) `  x
)  =  (  _I 
`  B ) )
7372adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  (  _I 
`  B ) )
7473eqcomd 2409 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  (  _I  `  B )  =  ( ( x  e.  A  |->  B ) `  x ) )
7570, 74sylan9eqr 2458 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( n  e.  Z  |->  B ) `  n
)  =  ( ( x  e.  A  |->  B ) `  x ) )
7675breq2d 4184 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
t  <  ( (
n  e.  Z  |->  B ) `  n )  <-> 
t  <  ( (
x  e.  A  |->  B ) `  x ) ) )
7776rexbidva 2683 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( E. n  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 n )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) ) )
7877adantlr 696 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( E. n  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 n )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) ) )
7969, 78syl5bb 249 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( E. m  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 m )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) ) )
8063, 79bitrd 245 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( E. z  e.  ran  ( n  e.  Z  |->  B ) t  < 
z  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x ) ) )
8154, 59, 803bitrd 271 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  (
t  <  ( G `  x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) ) )
8281ralrimiva 2749 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR )  ->  A. x  e.  A  ( t  <  ( G `  x
)  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x ) ) )
83 nfv 1626 . . . . . . . . . 10  |-  F/ z ( t  <  ( G `  x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x ) )
84 nfcv 2540 . . . . . . . . . . . 12  |-  F/_ x
t
85 nfcv 2540 . . . . . . . . . . . 12  |-  F/_ x  <
86 nfmpt1 4258 . . . . . . . . . . . . . 14  |-  F/_ x
( x  e.  A  |->  sup ( ran  (
n  e.  Z  |->  B ) ,  RR ,  <  ) )
8747, 86nfcxfr 2537 . . . . . . . . . . . . 13  |-  F/_ x G
88 nfcv 2540 . . . . . . . . . . . . 13  |-  F/_ x
z
8987, 88nffv 5694 . . . . . . . . . . . 12  |-  F/_ x
( G `  z
)
9084, 85, 89nfbr 4216 . . . . . . . . . . 11  |-  F/ x  t  <  ( G `  z )
91 nfcv 2540 . . . . . . . . . . . 12  |-  F/_ x Z
92 nffvmpt1 5695 . . . . . . . . . . . . 13  |-  F/_ x
( ( x  e.  A  |->  B ) `  z )
9384, 85, 92nfbr 4216 . . . . . . . . . . . 12  |-  F/ x  t  <  ( ( x  e.  A  |->  B ) `
 z )
9491, 93nfrex 2721 . . . . . . . . . . 11  |-  F/ x E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z )
9590, 94nfbi 1852 . . . . . . . . . 10  |-  F/ x
( t  <  ( G `  z )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) )
96 fveq2 5687 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
9796breq2d 4184 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
t  <  ( G `  x )  <->  t  <  ( G `  z ) ) )
98 fveq2 5687 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( x  e.  A  |->  B ) `  x
)  =  ( ( x  e.  A  |->  B ) `  z ) )
9998breq2d 4184 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
t  <  ( (
x  e.  A  |->  B ) `  x )  <-> 
t  <  ( (
x  e.  A  |->  B ) `  z ) ) )
10099rexbidv 2687 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  z
) ) )
10197, 100bibi12d 313 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( t  <  ( G `  x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x ) )  <-> 
( t  <  ( G `  z )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) ) )
10283, 95, 101cbvral 2888 . . . . . . . . 9  |-  ( A. x  e.  A  (
t  <  ( G `  x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) )  <->  A. z  e.  A  ( t  <  ( G `  z
)  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) )
10382, 102sylib 189 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR )  ->  A. z  e.  A  ( t  <  ( G `  z
)  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) )
104103r19.21bi 2764 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
t  <  ( G `  z )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  z
) ) )
105 rexr 9086 . . . . . . . . . 10  |-  ( t  e.  RR  ->  t  e.  RR* )
106105ad2antlr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  t  e.  RR* )
107 elioopnf 10954 . . . . . . . . 9  |-  ( t  e.  RR*  ->  ( ( G `  z )  e.  ( t (,) 
+oo )  <->  ( ( G `  z )  e.  RR  /\  t  < 
( G `  z
) ) ) )
108106, 107syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
( G `  z
)  e.  ( t (,)  +oo )  <->  ( ( G `  z )  e.  RR  /\  t  < 
( G `  z
) ) ) )
10948adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR )  ->  G : A
--> RR )
110109ffvelrnda 5829 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  ( G `  z )  e.  RR )
111110biantrurd 495 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
t  <  ( G `  z )  <->  ( ( G `  z )  e.  RR  /\  t  < 
( G `  z
) ) ) )
112108, 111bitr4d 248 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
( G `  z
)  e.  ( t (,)  +oo )  <->  t  <  ( G `  z ) ) )
113106adantr 452 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A
)  /\  n  e.  Z )  ->  t  e.  RR* )
114 elioopnf 10954 . . . . . . . . . 10  |-  ( t  e.  RR*  ->  ( ( ( x  e.  A  |->  B ) `  z
)  e.  ( t (,)  +oo )  <->  ( (
( x  e.  A  |->  B ) `  z
)  e.  RR  /\  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) ) )
115113, 114syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A
)  /\  n  e.  Z )  ->  (
( ( x  e.  A  |->  B ) `  z )  e.  ( t (,)  +oo )  <->  ( ( ( x  e.  A  |->  B ) `  z )  e.  RR  /\  t  <  ( ( x  e.  A  |->  B ) `  z ) ) ) )
1162, 71fmptd 5852 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B ) : A --> RR )
117116ffvelrnda 5829 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  Z )  /\  z  e.  A )  ->  (
( x  e.  A  |->  B ) `  z
)  e.  RR )
118117biantrurd 495 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  Z )  /\  z  e.  A )  ->  (
t  <  ( (
x  e.  A  |->  B ) `  z )  <-> 
( ( ( x  e.  A  |->  B ) `
 z )  e.  RR  /\  t  < 
( ( x  e.  A  |->  B ) `  z ) ) ) )
119118an32s 780 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  A )  /\  n  e.  Z )  ->  (
t  <  ( (
x  e.  A  |->  B ) `  z )  <-> 
( ( ( x  e.  A  |->  B ) `
 z )  e.  RR  /\  t  < 
( ( x  e.  A  |->  B ) `  z ) ) ) )
120119adantllr 700 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A
)  /\  n  e.  Z )  ->  (
t  <  ( (
x  e.  A  |->  B ) `  z )  <-> 
( ( ( x  e.  A  |->  B ) `
 z )  e.  RR  /\  t  < 
( ( x  e.  A  |->  B ) `  z ) ) ) )
121115, 120bitr4d 248 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A
)  /\  n  e.  Z )  ->  (
( ( x  e.  A  |->  B ) `  z )  e.  ( t (,)  +oo )  <->  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) )
122121rexbidva 2683 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  ( E. n  e.  Z  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,)  +oo )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) )
123104, 112, 1223bitr4d 277 . . . . . 6  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
( G `  z
)  e.  ( t (,)  +oo )  <->  E. n  e.  Z  ( (
x  e.  A  |->  B ) `  z )  e.  ( t (,) 
+oo ) ) )
124123pm5.32da 623 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  ( ( z  e.  A  /\  ( G `  z )  e.  ( t (,) 
+oo ) )  <->  ( z  e.  A  /\  E. n  e.  Z  ( (
x  e.  A  |->  B ) `  z )  e.  ( t (,) 
+oo ) ) ) )
125 ffn 5550 . . . . . . . 8  |-  ( G : A --> RR  ->  G  Fn  A )
12648, 125syl 16 . . . . . . 7  |-  ( ph  ->  G  Fn  A )
127126adantr 452 . . . . . 6  |-  ( (
ph  /\  t  e.  RR )  ->  G  Fn  A )
128 elpreima 5809 . . . . . 6  |-  ( G  Fn  A  ->  (
z  e.  ( `' G " ( t (,)  +oo ) )  <->  ( z  e.  A  /\  ( G `  z )  e.  ( t (,)  +oo ) ) ) )
129127, 128syl 16 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  ( z  e.  ( `' G " ( t (,)  +oo ) )  <->  ( z  e.  A  /\  ( G `  z )  e.  ( t (,)  +oo ) ) ) )
130 eliun 4057 . . . . . 6  |-  ( z  e.  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) " ( t (,)  +oo ) )  <->  E. n  e.  Z  z  e.  ( `' ( x  e.  A  |->  B ) "
( t (,)  +oo ) ) )
131 ffn 5550 . . . . . . . . . . 11  |-  ( ( x  e.  A  |->  B ) : A --> RR  ->  ( x  e.  A  |->  B )  Fn  A )
132116, 131syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B )  Fn  A )
133 elpreima 5809 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  B )  Fn  A  -> 
( z  e.  ( `' ( x  e.  A  |->  B ) "
( t (,)  +oo ) )  <->  ( z  e.  A  /\  (
( x  e.  A  |->  B ) `  z
)  e.  ( t (,)  +oo ) ) ) )
134132, 133syl 16 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  Z )  ->  (
z  e.  ( `' ( x  e.  A  |->  B ) " (
t (,)  +oo ) )  <-> 
( z  e.  A  /\  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,)  +oo )
) ) )
135134rexbidva 2683 . . . . . . . 8  |-  ( ph  ->  ( E. n  e.  Z  z  e.  ( `' ( x  e.  A  |->  B ) "
( t (,)  +oo ) )  <->  E. n  e.  Z  ( z  e.  A  /\  (
( x  e.  A  |->  B ) `  z
)  e.  ( t (,)  +oo ) ) ) )
136135adantr 452 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR )  ->  ( E. n  e.  Z  z  e.  ( `' ( x  e.  A  |->  B ) " ( t (,)  +oo ) )  <->  E. n  e.  Z  ( z  e.  A  /\  (
( x  e.  A  |->  B ) `  z
)  e.  ( t (,)  +oo ) ) ) )
137 r19.42v 2822 . . . . . . 7  |-  ( E. n  e.  Z  ( z  e.  A  /\  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,)  +oo )
)  <->  ( z  e.  A  /\  E. n  e.  Z  ( (
x  e.  A  |->  B ) `  z )  e.  ( t (,) 
+oo ) ) )
138136, 137syl6bb 253 . . . . . 6  |-  ( (
ph  /\  t  e.  RR )  ->  ( E. n  e.  Z  z  e.  ( `' ( x  e.  A  |->  B ) " ( t (,)  +oo ) )  <->  ( z  e.  A  /\  E. n  e.  Z  ( (
x  e.  A  |->  B ) `  z )  e.  ( t (,) 
+oo ) ) ) )
139130, 138syl5bb 249 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  ( z  e.  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) " ( t (,)  +oo ) )  <->  ( z  e.  A  /\  E. n  e.  Z  ( (
x  e.  A  |->  B ) `  z )  e.  ( t (,) 
+oo ) ) ) )
140124, 129, 1393bitr4d 277 . . . 4  |-  ( (
ph  /\  t  e.  RR )  ->  ( z  e.  ( `' G " ( t (,)  +oo ) )  <->  z  e.  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) "
( t (,)  +oo ) ) ) )
141140eqrdv 2402 . . 3  |-  ( (
ph  /\  t  e.  RR )  ->  ( `' G " ( t (,)  +oo ) )  = 
U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) "
( t (,)  +oo ) ) )
142 zex 10247 . . . . . . 7  |-  ZZ  e.  _V
143 uzssz 10461 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
144 ssdomg 7112 . . . . . . 7  |-  ( ZZ  e.  _V  ->  (
( ZZ>= `  M )  C_  ZZ  ->  ( ZZ>= `  M )  ~<_  ZZ ) )
145142, 143, 144mp2 9 . . . . . 6  |-  ( ZZ>= `  M )  ~<_  ZZ
14611, 145eqbrtri 4191 . . . . 5  |-  Z  ~<_  ZZ
147 znnen 12767 . . . . 5  |-  ZZ  ~~  NN
148 domentr 7125 . . . . 5  |-  ( ( Z  ~<_  ZZ  /\  ZZ  ~~  NN )  ->  Z  ~<_  NN )
149146, 147, 148mp2an 654 . . . 4  |-  Z  ~<_  NN
150 mbfsup.4 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B )  e. MblFn )
151 mbfima 19477 . . . . . . 7  |-  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  (
x  e.  A  |->  B ) : A --> RR )  ->  ( `' ( x  e.  A  |->  B ) " ( t (,)  +oo ) )  e. 
dom  vol )
152150, 116, 151syl2anc 643 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( `' ( x  e.  A  |->  B ) "
( t (,)  +oo ) )  e.  dom  vol )
153152ralrimiva 2749 . . . . 5  |-  ( ph  ->  A. n  e.  Z  ( `' ( x  e.  A  |->  B ) "
( t (,)  +oo ) )  e.  dom  vol )
154153adantr 452 . . . 4  |-  ( (
ph  /\  t  e.  RR )  ->  A. n  e.  Z  ( `' ( x  e.  A  |->  B ) " (
t (,)  +oo ) )  e.  dom  vol )
155 iunmbl2 19404 . . . 4  |-  ( ( Z  ~<_  NN  /\  A. n  e.  Z  ( `' ( x  e.  A  |->  B ) " (
t (,)  +oo ) )  e.  dom  vol )  ->  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) "
( t (,)  +oo ) )  e.  dom  vol )
156149, 154, 155sylancr 645 . . 3  |-  ( (
ph  /\  t  e.  RR )  ->  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) " (
t (,)  +oo ) )  e.  dom  vol )
157141, 156eqeltrd 2478 . 2  |-  ( (
ph  /\  t  e.  RR )  ->  ( `' G " ( t (,)  +oo ) )  e. 
dom  vol )
15848, 157ismbf3d 19499 1  |-  ( ph  ->  G  e. MblFn )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   _Vcvv 2916    C_ wss 3280   (/)c0 3588   U_ciun 4053   class class class wbr 4172    e. cmpt 4226    _I cid 4453   `'ccnv 4836   dom cdm 4837   ran crn 4838   "cima 4840    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    ~~ cen 7065    ~<_ cdom 7066   supcsup 7403   RRcr 8945    +oocpnf 9073   RR*cxr 9075    < clt 9076    <_ cle 9077   NNcn 9956   ZZcz 10238   ZZ>=cuz 10444   (,)cioo 10872   volcvol 19313  MblFncmbf 19459
This theorem is referenced by:  mbfinf  19510  mbflimsup  19511
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cc 8271  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-xadd 10667  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-sum 12435  df-xmet 16650  df-met 16651  df-ovol 19314  df-vol 19315  df-mbf 19465
  Copyright terms: Public domain W3C validator