MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfsup Structured version   Unicode version

Theorem mbfsup 21944
Description: The supremum of a sequence of measurable, real-valued functions is measurable. Note that in this and related theorems,  B
( n ,  x
) is a function of both  n and  x, since it is an  n-indexed sequence of functions on  x. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfsup.1  |-  Z  =  ( ZZ>= `  M )
mbfsup.2  |-  G  =  ( x  e.  A  |->  sup ( ran  (
n  e.  Z  |->  B ) ,  RR ,  <  ) )
mbfsup.3  |-  ( ph  ->  M  e.  ZZ )
mbfsup.4  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B )  e. MblFn )
mbfsup.5  |-  ( (
ph  /\  ( n  e.  Z  /\  x  e.  A ) )  ->  B  e.  RR )
mbfsup.6  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  RR  A. n  e.  Z  B  <_  y
)
Assertion
Ref Expression
mbfsup  |-  ( ph  ->  G  e. MblFn )
Distinct variable groups:    x, n, y, A    y, B    ph, n, x, y    n, Z, x, y
Allowed substitution hints:    B( x, n)    G( x, y, n)    M( x, y, n)

Proof of Theorem mbfsup
Dummy variables  m  z  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfsup.5 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  Z  /\  x  e.  A ) )  ->  B  e.  RR )
21anassrs 648 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  Z )  /\  x  e.  A )  ->  B  e.  RR )
32an32s 804 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  B  e.  RR )
4 eqid 2443 . . . . . 6  |-  ( n  e.  Z  |->  B )  =  ( n  e.  Z  |->  B )
53, 4fmptd 6040 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  B ) : Z --> RR )
6 frn 5727 . . . . 5  |-  ( ( n  e.  Z  |->  B ) : Z --> RR  ->  ran  ( n  e.  Z  |->  B )  C_  RR )
75, 6syl 16 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ran  ( n  e.  Z  |->  B )  C_  RR )
8 mbfsup.3 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
9 uzid 11104 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
108, 9syl 16 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
11 mbfsup.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
1210, 11syl6eleqr 2542 . . . . . . . 8  |-  ( ph  ->  M  e.  Z )
1312adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  M  e.  Z )
144, 3dmmptd 5701 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  dom  ( n  e.  Z  |->  B )  =  Z )
1513, 14eleqtrrd 2534 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  M  e.  dom  ( n  e.  Z  |->  B ) )
16 ne0i 3776 . . . . . 6  |-  ( M  e.  dom  ( n  e.  Z  |->  B )  ->  dom  ( n  e.  Z  |->  B )  =/=  (/) )
1715, 16syl 16 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  dom  ( n  e.  Z  |->  B )  =/=  (/) )
18 dm0rn0 5209 . . . . . 6  |-  ( dom  ( n  e.  Z  |->  B )  =  (/)  <->  ran  ( n  e.  Z  |->  B )  =  (/) )
1918necon3bii 2711 . . . . 5  |-  ( dom  ( n  e.  Z  |->  B )  =/=  (/)  <->  ran  ( n  e.  Z  |->  B )  =/=  (/) )
2017, 19sylib 196 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ran  ( n  e.  Z  |->  B )  =/=  (/) )
21 mbfsup.6 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  RR  A. n  e.  Z  B  <_  y
)
22 ffn 5721 . . . . . . . . 9  |-  ( ( n  e.  Z  |->  B ) : Z --> RR  ->  ( n  e.  Z  |->  B )  Fn  Z )
235, 22syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  B )  Fn  Z )
24 breq1 4440 . . . . . . . . 9  |-  ( z  =  ( ( n  e.  Z  |->  B ) `
 m )  -> 
( z  <_  y  <->  ( ( n  e.  Z  |->  B ) `  m
)  <_  y )
)
2524ralrn 6019 . . . . . . . 8  |-  ( ( n  e.  Z  |->  B )  Fn  Z  -> 
( A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y  <->  A. m  e.  Z  ( (
n  e.  Z  |->  B ) `  m )  <_  y ) )
2623, 25syl 16 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( A. z  e.  ran  ( n  e.  Z  |->  B ) z  <_ 
y  <->  A. m  e.  Z  ( ( n  e.  Z  |->  B ) `  m )  <_  y
) )
27 nffvmpt1 5864 . . . . . . . . . 10  |-  F/_ n
( ( n  e.  Z  |->  B ) `  m )
28 nfcv 2605 . . . . . . . . . 10  |-  F/_ n  <_
29 nfcv 2605 . . . . . . . . . 10  |-  F/_ n
y
3027, 28, 29nfbr 4481 . . . . . . . . 9  |-  F/ n
( ( n  e.  Z  |->  B ) `  m )  <_  y
31 nfv 1694 . . . . . . . . 9  |-  F/ m
( ( n  e.  Z  |->  B ) `  n )  <_  y
32 fveq2 5856 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( n  e.  Z  |->  B ) `  m
)  =  ( ( n  e.  Z  |->  B ) `  n ) )
3332breq1d 4447 . . . . . . . . 9  |-  ( m  =  n  ->  (
( ( n  e.  Z  |->  B ) `  m )  <_  y  <->  ( ( n  e.  Z  |->  B ) `  n
)  <_  y )
)
3430, 31, 33cbvral 3066 . . . . . . . 8  |-  ( A. m  e.  Z  (
( n  e.  Z  |->  B ) `  m
)  <_  y  <->  A. n  e.  Z  ( (
n  e.  Z  |->  B ) `  n )  <_  y )
35 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  n  e.  Z )
364fvmpt2 5948 . . . . . . . . . . 11  |-  ( ( n  e.  Z  /\  B  e.  RR )  ->  ( ( n  e.  Z  |->  B ) `  n )  =  B )
3735, 3, 36syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( n  e.  Z  |->  B ) `  n
)  =  B )
3837breq1d 4447 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( ( n  e.  Z  |->  B ) `  n )  <_  y  <->  B  <_  y ) )
3938ralbidva 2879 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( A. n  e.  Z  ( ( n  e.  Z  |->  B ) `  n )  <_  y  <->  A. n  e.  Z  B  <_  y ) )
4034, 39syl5bb 257 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( A. m  e.  Z  ( ( n  e.  Z  |->  B ) `  m )  <_  y  <->  A. n  e.  Z  B  <_  y ) )
4126, 40bitrd 253 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( A. z  e.  ran  ( n  e.  Z  |->  B ) z  <_ 
y  <->  A. n  e.  Z  B  <_  y ) )
4241rexbidv 2954 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( E. y  e.  RR  A. z  e.  ran  (
n  e.  Z  |->  B ) z  <_  y  <->  E. y  e.  RR  A. n  e.  Z  B  <_  y ) )
4321, 42mpbird 232 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  RR  A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y )
44 suprcl 10509 . . . 4  |-  ( ( ran  ( n  e.  Z  |->  B )  C_  RR  /\  ran  ( n  e.  Z  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y )  ->  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  e.  RR )
457, 20, 43, 44syl3anc 1229 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  e.  RR )
46 mbfsup.2 . . 3  |-  G  =  ( x  e.  A  |->  sup ( ran  (
n  e.  Z  |->  B ) ,  RR ,  <  ) )
4745, 46fmptd 6040 . 2  |-  ( ph  ->  G : A --> RR )
48 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  x  e.  A )
49 ltso 9668 . . . . . . . . . . . . . 14  |-  <  Or  RR
5049supex 7925 . . . . . . . . . . . . 13  |-  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  e.  _V
5146fvmpt2 5948 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  e.  _V )  -> 
( G `  x
)  =  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  ) )
5248, 50, 51sylancl 662 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( G `  x )  =  sup ( ran  (
n  e.  Z  |->  B ) ,  RR ,  <  ) )
5352breq2d 4449 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  (
t  <  ( G `  x )  <->  t  <  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  ) ) )
547, 20, 433jca 1177 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( ran  ( n  e.  Z  |->  B )  C_  RR  /\ 
ran  ( n  e.  Z  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y ) )
5554adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( ran  ( n  e.  Z  |->  B )  C_  RR  /\ 
ran  ( n  e.  Z  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y ) )
56 simplr 755 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  t  e.  RR )
57 suprlub 10511 . . . . . . . . . . . 12  |-  ( ( ( ran  ( n  e.  Z  |->  B ) 
C_  RR  /\  ran  (
n  e.  Z  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e.  ran  ( n  e.  Z  |->  B ) z  <_  y )  /\  t  e.  RR )  ->  ( t  <  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  <->  E. z  e.  ran  (
n  e.  Z  |->  B ) t  <  z
) )
5855, 56, 57syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  (
t  <  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  <->  E. z  e.  ran  ( n  e.  Z  |->  B ) t  <  z ) )
5923adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  (
n  e.  Z  |->  B )  Fn  Z )
60 breq2 4441 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( n  e.  Z  |->  B ) `
 m )  -> 
( t  <  z  <->  t  <  ( ( n  e.  Z  |->  B ) `
 m ) ) )
6160rexrn 6018 . . . . . . . . . . . . 13  |-  ( ( n  e.  Z  |->  B )  Fn  Z  -> 
( E. z  e. 
ran  ( n  e.  Z  |->  B ) t  <  z  <->  E. m  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `  m
) ) )
6259, 61syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( E. z  e.  ran  ( n  e.  Z  |->  B ) t  < 
z  <->  E. m  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 m ) ) )
63 nfcv 2605 . . . . . . . . . . . . . . 15  |-  F/_ n
t
64 nfcv 2605 . . . . . . . . . . . . . . 15  |-  F/_ n  <
6563, 64, 27nfbr 4481 . . . . . . . . . . . . . 14  |-  F/ n  t  <  ( ( n  e.  Z  |->  B ) `
 m )
66 nfv 1694 . . . . . . . . . . . . . 14  |-  F/ m  t  <  ( ( n  e.  Z  |->  B ) `
 n )
6732breq2d 4449 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  (
t  <  ( (
n  e.  Z  |->  B ) `  m )  <-> 
t  <  ( (
n  e.  Z  |->  B ) `  n ) ) )
6865, 66, 67cbvrex 3067 . . . . . . . . . . . . 13  |-  ( E. m  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 m )  <->  E. n  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `  n
) )
694fvmpt2i 5947 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  Z  ->  (
( n  e.  Z  |->  B ) `  n
)  =  (  _I 
`  B ) )
70 eqid 2443 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
7170fvmpt2i 5947 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  A  ->  (
( x  e.  A  |->  B ) `  x
)  =  (  _I 
`  B ) )
7271adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  (  _I 
`  B ) )
7372eqcomd 2451 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  (  _I  `  B )  =  ( ( x  e.  A  |->  B ) `  x ) )
7469, 73sylan9eqr 2506 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( n  e.  Z  |->  B ) `  n
)  =  ( ( x  e.  A  |->  B ) `  x ) )
7574breq2d 4449 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
t  <  ( (
n  e.  Z  |->  B ) `  n )  <-> 
t  <  ( (
x  e.  A  |->  B ) `  x ) ) )
7675rexbidva 2951 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( E. n  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 n )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) ) )
7776adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( E. n  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 n )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) ) )
7868, 77syl5bb 257 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( E. m  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 m )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) ) )
7962, 78bitrd 253 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( E. z  e.  ran  ( n  e.  Z  |->  B ) t  < 
z  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x ) ) )
8053, 58, 793bitrd 279 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  (
t  <  ( G `  x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) ) )
8180ralrimiva 2857 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR )  ->  A. x  e.  A  ( t  <  ( G `  x
)  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x ) ) )
82 nfv 1694 . . . . . . . . . 10  |-  F/ z ( t  <  ( G `  x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x ) )
83 nfcv 2605 . . . . . . . . . . . 12  |-  F/_ x
t
84 nfcv 2605 . . . . . . . . . . . 12  |-  F/_ x  <
85 nfmpt1 4526 . . . . . . . . . . . . . 14  |-  F/_ x
( x  e.  A  |->  sup ( ran  (
n  e.  Z  |->  B ) ,  RR ,  <  ) )
8646, 85nfcxfr 2603 . . . . . . . . . . . . 13  |-  F/_ x G
87 nfcv 2605 . . . . . . . . . . . . 13  |-  F/_ x
z
8886, 87nffv 5863 . . . . . . . . . . . 12  |-  F/_ x
( G `  z
)
8983, 84, 88nfbr 4481 . . . . . . . . . . 11  |-  F/ x  t  <  ( G `  z )
90 nfcv 2605 . . . . . . . . . . . 12  |-  F/_ x Z
91 nffvmpt1 5864 . . . . . . . . . . . . 13  |-  F/_ x
( ( x  e.  A  |->  B ) `  z )
9283, 84, 91nfbr 4481 . . . . . . . . . . . 12  |-  F/ x  t  <  ( ( x  e.  A  |->  B ) `
 z )
9390, 92nfrex 2906 . . . . . . . . . . 11  |-  F/ x E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z )
9489, 93nfbi 1920 . . . . . . . . . 10  |-  F/ x
( t  <  ( G `  z )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) )
95 fveq2 5856 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
9695breq2d 4449 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
t  <  ( G `  x )  <->  t  <  ( G `  z ) ) )
97 fveq2 5856 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( x  e.  A  |->  B ) `  x
)  =  ( ( x  e.  A  |->  B ) `  z ) )
9897breq2d 4449 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
t  <  ( (
x  e.  A  |->  B ) `  x )  <-> 
t  <  ( (
x  e.  A  |->  B ) `  z ) ) )
9998rexbidv 2954 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  z
) ) )
10096, 99bibi12d 321 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( t  <  ( G `  x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x ) )  <-> 
( t  <  ( G `  z )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) ) )
10182, 94, 100cbvral 3066 . . . . . . . . 9  |-  ( A. x  e.  A  (
t  <  ( G `  x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) )  <->  A. z  e.  A  ( t  <  ( G `  z
)  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) )
10281, 101sylib 196 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR )  ->  A. z  e.  A  ( t  <  ( G `  z
)  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) )
103102r19.21bi 2812 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
t  <  ( G `  z )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  z
) ) )
104 rexr 9642 . . . . . . . . . 10  |-  ( t  e.  RR  ->  t  e.  RR* )
105104ad2antlr 726 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  t  e.  RR* )
106 elioopnf 11627 . . . . . . . . 9  |-  ( t  e.  RR*  ->  ( ( G `  z )  e.  ( t (,) +oo )  <->  ( ( G `
 z )  e.  RR  /\  t  < 
( G `  z
) ) ) )
107105, 106syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
( G `  z
)  e.  ( t (,) +oo )  <->  ( ( G `  z )  e.  RR  /\  t  < 
( G `  z
) ) ) )
10847adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR )  ->  G : A
--> RR )
109108ffvelrnda 6016 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  ( G `  z )  e.  RR )
110109biantrurd 508 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
t  <  ( G `  z )  <->  ( ( G `  z )  e.  RR  /\  t  < 
( G `  z
) ) ) )
111107, 110bitr4d 256 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
( G `  z
)  e.  ( t (,) +oo )  <->  t  <  ( G `  z ) ) )
112105adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A
)  /\  n  e.  Z )  ->  t  e.  RR* )
113 elioopnf 11627 . . . . . . . . . 10  |-  ( t  e.  RR*  ->  ( ( ( x  e.  A  |->  B ) `  z
)  e.  ( t (,) +oo )  <->  ( (
( x  e.  A  |->  B ) `  z
)  e.  RR  /\  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) ) )
114112, 113syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A
)  /\  n  e.  Z )  ->  (
( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )  <->  ( ( ( x  e.  A  |->  B ) `  z )  e.  RR  /\  t  <  ( ( x  e.  A  |->  B ) `  z ) ) ) )
1152, 70fmptd 6040 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B ) : A --> RR )
116115ffvelrnda 6016 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  Z )  /\  z  e.  A )  ->  (
( x  e.  A  |->  B ) `  z
)  e.  RR )
117116biantrurd 508 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  Z )  /\  z  e.  A )  ->  (
t  <  ( (
x  e.  A  |->  B ) `  z )  <-> 
( ( ( x  e.  A  |->  B ) `
 z )  e.  RR  /\  t  < 
( ( x  e.  A  |->  B ) `  z ) ) ) )
118117an32s 804 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  A )  /\  n  e.  Z )  ->  (
t  <  ( (
x  e.  A  |->  B ) `  z )  <-> 
( ( ( x  e.  A  |->  B ) `
 z )  e.  RR  /\  t  < 
( ( x  e.  A  |->  B ) `  z ) ) ) )
119118adantllr 718 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A
)  /\  n  e.  Z )  ->  (
t  <  ( (
x  e.  A  |->  B ) `  z )  <-> 
( ( ( x  e.  A  |->  B ) `
 z )  e.  RR  /\  t  < 
( ( x  e.  A  |->  B ) `  z ) ) ) )
120114, 119bitr4d 256 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A
)  /\  n  e.  Z )  ->  (
( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )  <->  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) )
121120rexbidva 2951 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  ( E. n  e.  Z  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) )
122103, 111, 1213bitr4d 285 . . . . . 6  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
( G `  z
)  e.  ( t (,) +oo )  <->  E. n  e.  Z  ( (
x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo ) ) )
123122pm5.32da 641 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  ( ( z  e.  A  /\  ( G `  z )  e.  ( t (,) +oo ) )  <->  ( z  e.  A  /\  E. n  e.  Z  ( (
x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo ) ) ) )
124 ffn 5721 . . . . . . . 8  |-  ( G : A --> RR  ->  G  Fn  A )
12547, 124syl 16 . . . . . . 7  |-  ( ph  ->  G  Fn  A )
126125adantr 465 . . . . . 6  |-  ( (
ph  /\  t  e.  RR )  ->  G  Fn  A )
127 elpreima 5992 . . . . . 6  |-  ( G  Fn  A  ->  (
z  e.  ( `' G " ( t (,) +oo ) )  <-> 
( z  e.  A  /\  ( G `  z
)  e.  ( t (,) +oo ) ) ) )
128126, 127syl 16 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  ( z  e.  ( `' G " ( t (,) +oo ) )  <->  ( z  e.  A  /\  ( G `  z )  e.  ( t (,) +oo ) ) ) )
129 eliun 4320 . . . . . 6  |-  ( z  e.  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) )  <->  E. n  e.  Z  z  e.  ( `' ( x  e.  A  |->  B ) " (
t (,) +oo )
) )
130 ffn 5721 . . . . . . . . . . 11  |-  ( ( x  e.  A  |->  B ) : A --> RR  ->  ( x  e.  A  |->  B )  Fn  A )
131115, 130syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B )  Fn  A )
132 elpreima 5992 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  B )  Fn  A  -> 
( z  e.  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) )  <->  ( z  e.  A  /\  (
( x  e.  A  |->  B ) `  z
)  e.  ( t (,) +oo ) ) ) )
133131, 132syl 16 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  Z )  ->  (
z  e.  ( `' ( x  e.  A  |->  B ) " (
t (,) +oo )
)  <->  ( z  e.  A  /\  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo ) ) ) )
134133rexbidva 2951 . . . . . . . 8  |-  ( ph  ->  ( E. n  e.  Z  z  e.  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) )  <->  E. n  e.  Z  ( z  e.  A  /\  (
( x  e.  A  |->  B ) `  z
)  e.  ( t (,) +oo ) ) ) )
135134adantr 465 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR )  ->  ( E. n  e.  Z  z  e.  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) )  <->  E. n  e.  Z  ( z  e.  A  /\  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )
) ) )
136 r19.42v 2998 . . . . . . 7  |-  ( E. n  e.  Z  ( z  e.  A  /\  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )
)  <->  ( z  e.  A  /\  E. n  e.  Z  ( (
x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo ) ) )
137135, 136syl6bb 261 . . . . . 6  |-  ( (
ph  /\  t  e.  RR )  ->  ( E. n  e.  Z  z  e.  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) )  <-> 
( z  e.  A  /\  E. n  e.  Z  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )
) ) )
138129, 137syl5bb 257 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  ( z  e.  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) )  <-> 
( z  e.  A  /\  E. n  e.  Z  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )
) ) )
139123, 128, 1383bitr4d 285 . . . 4  |-  ( (
ph  /\  t  e.  RR )  ->  ( z  e.  ( `' G " ( t (,) +oo ) )  <->  z  e.  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) ) ) )
140139eqrdv 2440 . . 3  |-  ( (
ph  /\  t  e.  RR )  ->  ( `' G " ( t (,) +oo ) )  =  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) ) )
141 zex 10879 . . . . . . 7  |-  ZZ  e.  _V
142 uzssz 11109 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
143 ssdomg 7563 . . . . . . 7  |-  ( ZZ  e.  _V  ->  (
( ZZ>= `  M )  C_  ZZ  ->  ( ZZ>= `  M )  ~<_  ZZ ) )
144141, 142, 143mp2 9 . . . . . 6  |-  ( ZZ>= `  M )  ~<_  ZZ
14511, 144eqbrtri 4456 . . . . 5  |-  Z  ~<_  ZZ
146 znnen 13823 . . . . 5  |-  ZZ  ~~  NN
147 domentr 7576 . . . . 5  |-  ( ( Z  ~<_  ZZ  /\  ZZ  ~~  NN )  ->  Z  ~<_  NN )
148145, 146, 147mp2an 672 . . . 4  |-  Z  ~<_  NN
149 mbfsup.4 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B )  e. MblFn )
150 mbfima 21912 . . . . . . 7  |-  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  (
x  e.  A  |->  B ) : A --> RR )  ->  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) )  e.  dom  vol )
151149, 115, 150syl2anc 661 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) )  e.  dom  vol )
152151ralrimiva 2857 . . . . 5  |-  ( ph  ->  A. n  e.  Z  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) )  e.  dom  vol )
153152adantr 465 . . . 4  |-  ( (
ph  /\  t  e.  RR )  ->  A. n  e.  Z  ( `' ( x  e.  A  |->  B ) " (
t (,) +oo )
)  e.  dom  vol )
154 iunmbl2 21840 . . . 4  |-  ( ( Z  ~<_  NN  /\  A. n  e.  Z  ( `' ( x  e.  A  |->  B ) " (
t (,) +oo )
)  e.  dom  vol )  ->  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) )  e.  dom  vol )
155148, 153, 154sylancr 663 . . 3  |-  ( (
ph  /\  t  e.  RR )  ->  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) " (
t (,) +oo )
)  e.  dom  vol )
156140, 155eqeltrd 2531 . 2  |-  ( (
ph  /\  t  e.  RR )  ->  ( `' G " ( t (,) +oo ) )  e.  dom  vol )
15747, 156ismbf3d 21934 1  |-  ( ph  ->  G  e. MblFn )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794   _Vcvv 3095    C_ wss 3461   (/)c0 3770   U_ciun 4315   class class class wbr 4437    |-> cmpt 4495    _I cid 4780   `'ccnv 4988   dom cdm 4989   ran crn 4990   "cima 4992    Fn wfn 5573   -->wf 5574   ` cfv 5578  (class class class)co 6281    ~~ cen 7515    ~<_ cdom 7516   supcsup 7902   RRcr 9494   +oocpnf 9628   RR*cxr 9630    < clt 9631    <_ cle 9632   NNcn 10542   ZZcz 10870   ZZ>=cuz 11090   (,)cioo 11538   volcvol 21748  MblFncmbf 21896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cc 8818  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-disj 4408  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-omul 7137  df-er 7313  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-sup 7903  df-oi 7938  df-card 8323  df-acn 8326  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-n0 10802  df-z 10871  df-uz 11091  df-q 11192  df-rp 11230  df-xadd 11328  df-ioo 11542  df-ioc 11543  df-ico 11544  df-icc 11545  df-fz 11682  df-fzo 11804  df-fl 11908  df-seq 12087  df-exp 12146  df-hash 12385  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-clim 13290  df-rlim 13291  df-sum 13488  df-xmet 18286  df-met 18287  df-ovol 21749  df-vol 21750  df-mbf 21901
This theorem is referenced by:  mbfinf  21945  mbflimsup  21946
  Copyright terms: Public domain W3C validator