MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfsup Structured version   Visualization version   Unicode version

Theorem mbfsup 22699
Description: The supremum of a sequence of measurable, real-valued functions is measurable. Note that in this and related theorems,  B
( n ,  x
) is a function of both  n and  x, since it is an  n-indexed sequence of functions on  x. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfsup.1  |-  Z  =  ( ZZ>= `  M )
mbfsup.2  |-  G  =  ( x  e.  A  |->  sup ( ran  (
n  e.  Z  |->  B ) ,  RR ,  <  ) )
mbfsup.3  |-  ( ph  ->  M  e.  ZZ )
mbfsup.4  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B )  e. MblFn )
mbfsup.5  |-  ( (
ph  /\  ( n  e.  Z  /\  x  e.  A ) )  ->  B  e.  RR )
mbfsup.6  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  RR  A. n  e.  Z  B  <_  y
)
Assertion
Ref Expression
mbfsup  |-  ( ph  ->  G  e. MblFn )
Distinct variable groups:    x, n, y, A    y, B    ph, n, x, y    n, Z, x, y
Allowed substitution hints:    B( x, n)    G( x, y, n)    M( x, y, n)

Proof of Theorem mbfsup
Dummy variables  m  z  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfsup.5 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  Z  /\  x  e.  A ) )  ->  B  e.  RR )
21anassrs 660 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  Z )  /\  x  e.  A )  ->  B  e.  RR )
32an32s 821 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  B  e.  RR )
4 eqid 2471 . . . . . 6  |-  ( n  e.  Z  |->  B )  =  ( n  e.  Z  |->  B )
53, 4fmptd 6061 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  B ) : Z --> RR )
6 frn 5747 . . . . 5  |-  ( ( n  e.  Z  |->  B ) : Z --> RR  ->  ran  ( n  e.  Z  |->  B )  C_  RR )
75, 6syl 17 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ran  ( n  e.  Z  |->  B )  C_  RR )
8 mbfsup.3 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
9 uzid 11197 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
108, 9syl 17 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
11 mbfsup.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
1210, 11syl6eleqr 2560 . . . . . . . 8  |-  ( ph  ->  M  e.  Z )
1312adantr 472 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  M  e.  Z )
144, 3dmmptd 5718 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  dom  ( n  e.  Z  |->  B )  =  Z )
1513, 14eleqtrrd 2552 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  M  e.  dom  ( n  e.  Z  |->  B ) )
16 ne0i 3728 . . . . . 6  |-  ( M  e.  dom  ( n  e.  Z  |->  B )  ->  dom  ( n  e.  Z  |->  B )  =/=  (/) )
1715, 16syl 17 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  dom  ( n  e.  Z  |->  B )  =/=  (/) )
18 dm0rn0 5057 . . . . . 6  |-  ( dom  ( n  e.  Z  |->  B )  =  (/)  <->  ran  ( n  e.  Z  |->  B )  =  (/) )
1918necon3bii 2695 . . . . 5  |-  ( dom  ( n  e.  Z  |->  B )  =/=  (/)  <->  ran  ( n  e.  Z  |->  B )  =/=  (/) )
2017, 19sylib 201 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ran  ( n  e.  Z  |->  B )  =/=  (/) )
21 mbfsup.6 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  RR  A. n  e.  Z  B  <_  y
)
22 ffn 5739 . . . . . . . . 9  |-  ( ( n  e.  Z  |->  B ) : Z --> RR  ->  ( n  e.  Z  |->  B )  Fn  Z )
235, 22syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  B )  Fn  Z )
24 breq1 4398 . . . . . . . . 9  |-  ( z  =  ( ( n  e.  Z  |->  B ) `
 m )  -> 
( z  <_  y  <->  ( ( n  e.  Z  |->  B ) `  m
)  <_  y )
)
2524ralrn 6040 . . . . . . . 8  |-  ( ( n  e.  Z  |->  B )  Fn  Z  -> 
( A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y  <->  A. m  e.  Z  ( (
n  e.  Z  |->  B ) `  m )  <_  y ) )
2623, 25syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( A. z  e.  ran  ( n  e.  Z  |->  B ) z  <_ 
y  <->  A. m  e.  Z  ( ( n  e.  Z  |->  B ) `  m )  <_  y
) )
27 nffvmpt1 5887 . . . . . . . . . 10  |-  F/_ n
( ( n  e.  Z  |->  B ) `  m )
28 nfcv 2612 . . . . . . . . . 10  |-  F/_ n  <_
29 nfcv 2612 . . . . . . . . . 10  |-  F/_ n
y
3027, 28, 29nfbr 4440 . . . . . . . . 9  |-  F/ n
( ( n  e.  Z  |->  B ) `  m )  <_  y
31 nfv 1769 . . . . . . . . 9  |-  F/ m
( ( n  e.  Z  |->  B ) `  n )  <_  y
32 fveq2 5879 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( n  e.  Z  |->  B ) `  m
)  =  ( ( n  e.  Z  |->  B ) `  n ) )
3332breq1d 4405 . . . . . . . . 9  |-  ( m  =  n  ->  (
( ( n  e.  Z  |->  B ) `  m )  <_  y  <->  ( ( n  e.  Z  |->  B ) `  n
)  <_  y )
)
3430, 31, 33cbvral 3001 . . . . . . . 8  |-  ( A. m  e.  Z  (
( n  e.  Z  |->  B ) `  m
)  <_  y  <->  A. n  e.  Z  ( (
n  e.  Z  |->  B ) `  n )  <_  y )
35 simpr 468 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  n  e.  Z )
364fvmpt2 5972 . . . . . . . . . . 11  |-  ( ( n  e.  Z  /\  B  e.  RR )  ->  ( ( n  e.  Z  |->  B ) `  n )  =  B )
3735, 3, 36syl2anc 673 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( n  e.  Z  |->  B ) `  n
)  =  B )
3837breq1d 4405 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( ( n  e.  Z  |->  B ) `  n )  <_  y  <->  B  <_  y ) )
3938ralbidva 2828 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( A. n  e.  Z  ( ( n  e.  Z  |->  B ) `  n )  <_  y  <->  A. n  e.  Z  B  <_  y ) )
4034, 39syl5bb 265 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( A. m  e.  Z  ( ( n  e.  Z  |->  B ) `  m )  <_  y  <->  A. n  e.  Z  B  <_  y ) )
4126, 40bitrd 261 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( A. z  e.  ran  ( n  e.  Z  |->  B ) z  <_ 
y  <->  A. n  e.  Z  B  <_  y ) )
4241rexbidv 2892 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( E. y  e.  RR  A. z  e.  ran  (
n  e.  Z  |->  B ) z  <_  y  <->  E. y  e.  RR  A. n  e.  Z  B  <_  y ) )
4321, 42mpbird 240 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  RR  A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y )
44 suprcl 10591 . . . 4  |-  ( ( ran  ( n  e.  Z  |->  B )  C_  RR  /\  ran  ( n  e.  Z  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y )  ->  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  e.  RR )
457, 20, 43, 44syl3anc 1292 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  e.  RR )
46 mbfsup.2 . . 3  |-  G  =  ( x  e.  A  |->  sup ( ran  (
n  e.  Z  |->  B ) ,  RR ,  <  ) )
4745, 46fmptd 6061 . 2  |-  ( ph  ->  G : A --> RR )
48 simpr 468 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  x  e.  A )
49 ltso 9732 . . . . . . . . . . . . . 14  |-  <  Or  RR
5049supex 7995 . . . . . . . . . . . . 13  |-  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  e.  _V
5146fvmpt2 5972 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  e.  _V )  -> 
( G `  x
)  =  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  ) )
5248, 50, 51sylancl 675 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( G `  x )  =  sup ( ran  (
n  e.  Z  |->  B ) ,  RR ,  <  ) )
5352breq2d 4407 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  (
t  <  ( G `  x )  <->  t  <  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  ) ) )
547, 20, 433jca 1210 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( ran  ( n  e.  Z  |->  B )  C_  RR  /\ 
ran  ( n  e.  Z  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y ) )
5554adantlr 729 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( ran  ( n  e.  Z  |->  B )  C_  RR  /\ 
ran  ( n  e.  Z  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  Z  |->  B ) z  <_  y ) )
56 simplr 770 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  t  e.  RR )
57 suprlub 10593 . . . . . . . . . . . 12  |-  ( ( ( ran  ( n  e.  Z  |->  B ) 
C_  RR  /\  ran  (
n  e.  Z  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e.  ran  ( n  e.  Z  |->  B ) z  <_  y )  /\  t  e.  RR )  ->  ( t  <  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  <->  E. z  e.  ran  (
n  e.  Z  |->  B ) t  <  z
) )
5855, 56, 57syl2anc 673 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  (
t  <  sup ( ran  ( n  e.  Z  |->  B ) ,  RR ,  <  )  <->  E. z  e.  ran  ( n  e.  Z  |->  B ) t  <  z ) )
5923adantlr 729 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  (
n  e.  Z  |->  B )  Fn  Z )
60 breq2 4399 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( n  e.  Z  |->  B ) `
 m )  -> 
( t  <  z  <->  t  <  ( ( n  e.  Z  |->  B ) `
 m ) ) )
6160rexrn 6039 . . . . . . . . . . . . 13  |-  ( ( n  e.  Z  |->  B )  Fn  Z  -> 
( E. z  e. 
ran  ( n  e.  Z  |->  B ) t  <  z  <->  E. m  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `  m
) ) )
6259, 61syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( E. z  e.  ran  ( n  e.  Z  |->  B ) t  < 
z  <->  E. m  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 m ) ) )
63 nfcv 2612 . . . . . . . . . . . . . . 15  |-  F/_ n
t
64 nfcv 2612 . . . . . . . . . . . . . . 15  |-  F/_ n  <
6563, 64, 27nfbr 4440 . . . . . . . . . . . . . 14  |-  F/ n  t  <  ( ( n  e.  Z  |->  B ) `
 m )
66 nfv 1769 . . . . . . . . . . . . . 14  |-  F/ m  t  <  ( ( n  e.  Z  |->  B ) `
 n )
6732breq2d 4407 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  (
t  <  ( (
n  e.  Z  |->  B ) `  m )  <-> 
t  <  ( (
n  e.  Z  |->  B ) `  n ) ) )
6865, 66, 67cbvrex 3002 . . . . . . . . . . . . 13  |-  ( E. m  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 m )  <->  E. n  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `  n
) )
694fvmpt2i 5971 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  Z  ->  (
( n  e.  Z  |->  B ) `  n
)  =  (  _I 
`  B ) )
70 eqid 2471 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
7170fvmpt2i 5971 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  A  ->  (
( x  e.  A  |->  B ) `  x
)  =  (  _I 
`  B ) )
7271adantl 473 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  (  _I 
`  B ) )
7372eqcomd 2477 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  (  _I  `  B )  =  ( ( x  e.  A  |->  B ) `  x ) )
7469, 73sylan9eqr 2527 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( n  e.  Z  |->  B ) `  n
)  =  ( ( x  e.  A  |->  B ) `  x ) )
7574breq2d 4407 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
t  <  ( (
n  e.  Z  |->  B ) `  n )  <-> 
t  <  ( (
x  e.  A  |->  B ) `  x ) ) )
7675rexbidva 2889 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( E. n  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 n )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) ) )
7776adantlr 729 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( E. n  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 n )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) ) )
7868, 77syl5bb 265 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( E. m  e.  Z  t  <  ( ( n  e.  Z  |->  B ) `
 m )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) ) )
7962, 78bitrd 261 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  ( E. z  e.  ran  ( n  e.  Z  |->  B ) t  < 
z  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x ) ) )
8053, 58, 793bitrd 287 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  A )  ->  (
t  <  ( G `  x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) ) )
8180ralrimiva 2809 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR )  ->  A. x  e.  A  ( t  <  ( G `  x
)  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x ) ) )
82 nfv 1769 . . . . . . . . . 10  |-  F/ z ( t  <  ( G `  x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x ) )
83 nfcv 2612 . . . . . . . . . . . 12  |-  F/_ x
t
84 nfcv 2612 . . . . . . . . . . . 12  |-  F/_ x  <
85 nfmpt1 4485 . . . . . . . . . . . . . 14  |-  F/_ x
( x  e.  A  |->  sup ( ran  (
n  e.  Z  |->  B ) ,  RR ,  <  ) )
8646, 85nfcxfr 2610 . . . . . . . . . . . . 13  |-  F/_ x G
87 nfcv 2612 . . . . . . . . . . . . 13  |-  F/_ x
z
8886, 87nffv 5886 . . . . . . . . . . . 12  |-  F/_ x
( G `  z
)
8983, 84, 88nfbr 4440 . . . . . . . . . . 11  |-  F/ x  t  <  ( G `  z )
90 nfcv 2612 . . . . . . . . . . . 12  |-  F/_ x Z
91 nffvmpt1 5887 . . . . . . . . . . . . 13  |-  F/_ x
( ( x  e.  A  |->  B ) `  z )
9283, 84, 91nfbr 4440 . . . . . . . . . . . 12  |-  F/ x  t  <  ( ( x  e.  A  |->  B ) `
 z )
9390, 92nfrex 2848 . . . . . . . . . . 11  |-  F/ x E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z )
9489, 93nfbi 2037 . . . . . . . . . 10  |-  F/ x
( t  <  ( G `  z )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) )
95 fveq2 5879 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
9695breq2d 4407 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
t  <  ( G `  x )  <->  t  <  ( G `  z ) ) )
97 fveq2 5879 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( x  e.  A  |->  B ) `  x
)  =  ( ( x  e.  A  |->  B ) `  z ) )
9897breq2d 4407 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
t  <  ( (
x  e.  A  |->  B ) `  x )  <-> 
t  <  ( (
x  e.  A  |->  B ) `  z ) ) )
9998rexbidv 2892 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  z
) ) )
10096, 99bibi12d 328 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( t  <  ( G `  x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 x ) )  <-> 
( t  <  ( G `  z )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) ) )
10182, 94, 100cbvral 3001 . . . . . . . . 9  |-  ( A. x  e.  A  (
t  <  ( G `  x )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  x
) )  <->  A. z  e.  A  ( t  <  ( G `  z
)  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) )
10281, 101sylib 201 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR )  ->  A. z  e.  A  ( t  <  ( G `  z
)  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) )
103102r19.21bi 2776 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
t  <  ( G `  z )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `  z
) ) )
104 rexr 9704 . . . . . . . . . 10  |-  ( t  e.  RR  ->  t  e.  RR* )
105104ad2antlr 741 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  t  e.  RR* )
106 elioopnf 11753 . . . . . . . . 9  |-  ( t  e.  RR*  ->  ( ( G `  z )  e.  ( t (,) +oo )  <->  ( ( G `
 z )  e.  RR  /\  t  < 
( G `  z
) ) ) )
107105, 106syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
( G `  z
)  e.  ( t (,) +oo )  <->  ( ( G `  z )  e.  RR  /\  t  < 
( G `  z
) ) ) )
10847adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR )  ->  G : A
--> RR )
109108ffvelrnda 6037 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  ( G `  z )  e.  RR )
110109biantrurd 516 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
t  <  ( G `  z )  <->  ( ( G `  z )  e.  RR  /\  t  < 
( G `  z
) ) ) )
111107, 110bitr4d 264 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
( G `  z
)  e.  ( t (,) +oo )  <->  t  <  ( G `  z ) ) )
112105adantr 472 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A
)  /\  n  e.  Z )  ->  t  e.  RR* )
113 elioopnf 11753 . . . . . . . . . 10  |-  ( t  e.  RR*  ->  ( ( ( x  e.  A  |->  B ) `  z
)  e.  ( t (,) +oo )  <->  ( (
( x  e.  A  |->  B ) `  z
)  e.  RR  /\  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) ) )
114112, 113syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A
)  /\  n  e.  Z )  ->  (
( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )  <->  ( ( ( x  e.  A  |->  B ) `  z )  e.  RR  /\  t  <  ( ( x  e.  A  |->  B ) `  z ) ) ) )
1152, 70fmptd 6061 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B ) : A --> RR )
116115ffvelrnda 6037 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  Z )  /\  z  e.  A )  ->  (
( x  e.  A  |->  B ) `  z
)  e.  RR )
117116biantrurd 516 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  Z )  /\  z  e.  A )  ->  (
t  <  ( (
x  e.  A  |->  B ) `  z )  <-> 
( ( ( x  e.  A  |->  B ) `
 z )  e.  RR  /\  t  < 
( ( x  e.  A  |->  B ) `  z ) ) ) )
118117an32s 821 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  A )  /\  n  e.  Z )  ->  (
t  <  ( (
x  e.  A  |->  B ) `  z )  <-> 
( ( ( x  e.  A  |->  B ) `
 z )  e.  RR  /\  t  < 
( ( x  e.  A  |->  B ) `  z ) ) ) )
119118adantllr 733 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A
)  /\  n  e.  Z )  ->  (
t  <  ( (
x  e.  A  |->  B ) `  z )  <-> 
( ( ( x  e.  A  |->  B ) `
 z )  e.  RR  /\  t  < 
( ( x  e.  A  |->  B ) `  z ) ) ) )
120114, 119bitr4d 264 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A
)  /\  n  e.  Z )  ->  (
( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )  <->  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) )
121120rexbidva 2889 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  ( E. n  e.  Z  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )  <->  E. n  e.  Z  t  <  ( ( x  e.  A  |->  B ) `
 z ) ) )
122103, 111, 1213bitr4d 293 . . . . . 6  |-  ( ( ( ph  /\  t  e.  RR )  /\  z  e.  A )  ->  (
( G `  z
)  e.  ( t (,) +oo )  <->  E. n  e.  Z  ( (
x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo ) ) )
123122pm5.32da 653 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  ( ( z  e.  A  /\  ( G `  z )  e.  ( t (,) +oo ) )  <->  ( z  e.  A  /\  E. n  e.  Z  ( (
x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo ) ) ) )
124 ffn 5739 . . . . . . . 8  |-  ( G : A --> RR  ->  G  Fn  A )
12547, 124syl 17 . . . . . . 7  |-  ( ph  ->  G  Fn  A )
126125adantr 472 . . . . . 6  |-  ( (
ph  /\  t  e.  RR )  ->  G  Fn  A )
127 elpreima 6017 . . . . . 6  |-  ( G  Fn  A  ->  (
z  e.  ( `' G " ( t (,) +oo ) )  <-> 
( z  e.  A  /\  ( G `  z
)  e.  ( t (,) +oo ) ) ) )
128126, 127syl 17 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  ( z  e.  ( `' G " ( t (,) +oo ) )  <->  ( z  e.  A  /\  ( G `  z )  e.  ( t (,) +oo ) ) ) )
129 eliun 4274 . . . . . 6  |-  ( z  e.  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) )  <->  E. n  e.  Z  z  e.  ( `' ( x  e.  A  |->  B ) " (
t (,) +oo )
) )
130 ffn 5739 . . . . . . . . . . 11  |-  ( ( x  e.  A  |->  B ) : A --> RR  ->  ( x  e.  A  |->  B )  Fn  A )
131115, 130syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B )  Fn  A )
132 elpreima 6017 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  B )  Fn  A  -> 
( z  e.  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) )  <->  ( z  e.  A  /\  (
( x  e.  A  |->  B ) `  z
)  e.  ( t (,) +oo ) ) ) )
133131, 132syl 17 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  Z )  ->  (
z  e.  ( `' ( x  e.  A  |->  B ) " (
t (,) +oo )
)  <->  ( z  e.  A  /\  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo ) ) ) )
134133rexbidva 2889 . . . . . . . 8  |-  ( ph  ->  ( E. n  e.  Z  z  e.  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) )  <->  E. n  e.  Z  ( z  e.  A  /\  (
( x  e.  A  |->  B ) `  z
)  e.  ( t (,) +oo ) ) ) )
135134adantr 472 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR )  ->  ( E. n  e.  Z  z  e.  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) )  <->  E. n  e.  Z  ( z  e.  A  /\  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )
) ) )
136 r19.42v 2931 . . . . . . 7  |-  ( E. n  e.  Z  ( z  e.  A  /\  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )
)  <->  ( z  e.  A  /\  E. n  e.  Z  ( (
x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo ) ) )
137135, 136syl6bb 269 . . . . . 6  |-  ( (
ph  /\  t  e.  RR )  ->  ( E. n  e.  Z  z  e.  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) )  <-> 
( z  e.  A  /\  E. n  e.  Z  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )
) ) )
138129, 137syl5bb 265 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  ( z  e.  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) )  <-> 
( z  e.  A  /\  E. n  e.  Z  ( ( x  e.  A  |->  B ) `  z )  e.  ( t (,) +oo )
) ) )
139123, 128, 1383bitr4d 293 . . . 4  |-  ( (
ph  /\  t  e.  RR )  ->  ( z  e.  ( `' G " ( t (,) +oo ) )  <->  z  e.  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) ) ) )
140139eqrdv 2469 . . 3  |-  ( (
ph  /\  t  e.  RR )  ->  ( `' G " ( t (,) +oo ) )  =  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) ) )
141 zex 10970 . . . . . . 7  |-  ZZ  e.  _V
142 uzssz 11202 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
143 ssdomg 7633 . . . . . . 7  |-  ( ZZ  e.  _V  ->  (
( ZZ>= `  M )  C_  ZZ  ->  ( ZZ>= `  M )  ~<_  ZZ ) )
144141, 142, 143mp2 9 . . . . . 6  |-  ( ZZ>= `  M )  ~<_  ZZ
14511, 144eqbrtri 4415 . . . . 5  |-  Z  ~<_  ZZ
146 znnen 14342 . . . . 5  |-  ZZ  ~~  NN
147 domentr 7646 . . . . 5  |-  ( ( Z  ~<_  ZZ  /\  ZZ  ~~  NN )  ->  Z  ~<_  NN )
148145, 146, 147mp2an 686 . . . 4  |-  Z  ~<_  NN
149 mbfsup.4 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B )  e. MblFn )
150 mbfima 22667 . . . . . . 7  |-  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  (
x  e.  A  |->  B ) : A --> RR )  ->  ( `' ( x  e.  A  |->  B ) " ( t (,) +oo ) )  e.  dom  vol )
151149, 115, 150syl2anc 673 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) )  e.  dom  vol )
152151ralrimiva 2809 . . . . 5  |-  ( ph  ->  A. n  e.  Z  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) )  e.  dom  vol )
153152adantr 472 . . . 4  |-  ( (
ph  /\  t  e.  RR )  ->  A. n  e.  Z  ( `' ( x  e.  A  |->  B ) " (
t (,) +oo )
)  e.  dom  vol )
154 iunmbl2 22589 . . . 4  |-  ( ( Z  ~<_  NN  /\  A. n  e.  Z  ( `' ( x  e.  A  |->  B ) " (
t (,) +oo )
)  e.  dom  vol )  ->  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) "
( t (,) +oo ) )  e.  dom  vol )
155148, 153, 154sylancr 676 . . 3  |-  ( (
ph  /\  t  e.  RR )  ->  U_ n  e.  Z  ( `' ( x  e.  A  |->  B ) " (
t (,) +oo )
)  e.  dom  vol )
156140, 155eqeltrd 2549 . 2  |-  ( (
ph  /\  t  e.  RR )  ->  ( `' G " ( t (,) +oo ) )  e.  dom  vol )
15747, 156ismbf3d 22689 1  |-  ( ph  ->  G  e. MblFn )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   _Vcvv 3031    C_ wss 3390   (/)c0 3722   U_ciun 4269   class class class wbr 4395    |-> cmpt 4454    _I cid 4749   `'ccnv 4838   dom cdm 4839   ran crn 4840   "cima 4842    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308    ~~ cen 7584    ~<_ cdom 7585   supcsup 7972   RRcr 9556   +oocpnf 9690   RR*cxr 9692    < clt 9693    <_ cle 9694   NNcn 10631   ZZcz 10961   ZZ>=cuz 11182   (,)cioo 11660   volcvol 22493  MblFncmbf 22651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cc 8883  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-disj 4367  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-omul 7205  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-acn 8394  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-xadd 11433  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-rlim 13630  df-sum 13830  df-xmet 19040  df-met 19041  df-ovol 22494  df-vol 22496  df-mbf 22656
This theorem is referenced by:  mbfinf  22700  mbfinfOLD  22701  mbflimsup  22702  mbflimsupOLD  22703
  Copyright terms: Public domain W3C validator