MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfsub Unicode version

Theorem mbfsub 19507
Description: The difference of two measurable functions is measurable. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
mbfadd.1  |-  ( ph  ->  F  e. MblFn )
mbfadd.2  |-  ( ph  ->  G  e. MblFn )
Assertion
Ref Expression
mbfsub  |-  ( ph  ->  ( F  o F  -  G )  e. MblFn
)

Proof of Theorem mbfsub
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mbfadd.1 . . . . . . . 8  |-  ( ph  ->  F  e. MblFn )
2 mbff 19472 . . . . . . . 8  |-  ( F  e. MblFn  ->  F : dom  F --> CC )
31, 2syl 16 . . . . . . 7  |-  ( ph  ->  F : dom  F --> CC )
4 elin 3490 . . . . . . . 8  |-  ( x  e.  ( dom  F  i^i  dom  G )  <->  ( x  e.  dom  F  /\  x  e.  dom  G ) )
54simplbi 447 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  F )
6 ffvelrn 5827 . . . . . . 7  |-  ( ( F : dom  F --> CC  /\  x  e.  dom  F )  ->  ( F `  x )  e.  CC )
73, 5, 6syl2an 464 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  ( F `  x )  e.  CC )
8 mbfadd.2 . . . . . . . 8  |-  ( ph  ->  G  e. MblFn )
9 mbff 19472 . . . . . . . 8  |-  ( G  e. MblFn  ->  G : dom  G --> CC )
108, 9syl 16 . . . . . . 7  |-  ( ph  ->  G : dom  G --> CC )
114simprbi 451 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  G )
12 ffvelrn 5827 . . . . . . 7  |-  ( ( G : dom  G --> CC  /\  x  e.  dom  G )  ->  ( G `  x )  e.  CC )
1310, 11, 12syl2an 464 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  ( G `  x )  e.  CC )
147, 13negsubd 9373 . . . . 5  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( F `  x
)  +  -u ( G `  x )
)  =  ( ( F `  x )  -  ( G `  x ) ) )
1514eqcomd 2409 . . . 4  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( F `  x
)  -  ( G `
 x ) )  =  ( ( F `
 x )  + 
-u ( G `  x ) ) )
1615mpteq2dva 4255 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  -  ( G `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x )  +  -u ( G `  x ) ) ) )
17 ffn 5550 . . . . 5  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
183, 17syl 16 . . . 4  |-  ( ph  ->  F  Fn  dom  F
)
19 ffn 5550 . . . . 5  |-  ( G : dom  G --> CC  ->  G  Fn  dom  G )
2010, 19syl 16 . . . 4  |-  ( ph  ->  G  Fn  dom  G
)
21 mbfdm 19473 . . . . 5  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
221, 21syl 16 . . . 4  |-  ( ph  ->  dom  F  e.  dom  vol )
23 mbfdm 19473 . . . . 5  |-  ( G  e. MblFn  ->  dom  G  e.  dom  vol )
248, 23syl 16 . . . 4  |-  ( ph  ->  dom  G  e.  dom  vol )
25 eqid 2404 . . . 4  |-  ( dom 
F  i^i  dom  G )  =  ( dom  F  i^i  dom  G )
26 eqidd 2405 . . . 4  |-  ( (
ph  /\  x  e.  dom  F )  ->  ( F `  x )  =  ( F `  x ) )
27 eqidd 2405 . . . 4  |-  ( (
ph  /\  x  e.  dom  G )  ->  ( G `  x )  =  ( G `  x ) )
2818, 20, 22, 24, 25, 26, 27offval 6271 . . 3  |-  ( ph  ->  ( F  o F  -  G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  -  ( G `  x ) ) ) )
29 inmbl 19389 . . . . 5  |-  ( ( dom  F  e.  dom  vol 
/\  dom  G  e.  dom  vol )  ->  ( dom  F  i^i  dom  G
)  e.  dom  vol )
3022, 24, 29syl2anc 643 . . . 4  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  e.  dom  vol )
3113negcld 9354 . . . 4  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  -u ( G `  x )  e.  CC )
32 eqidd 2405 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) ) )
33 eqidd 2405 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  -u ( G `  x ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  -u ( G `  x ) ) )
3430, 7, 31, 32, 33offval2 6281 . . 3  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( F `
 x ) )  o F  +  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  -u ( G `  x ) ) )  =  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x )  +  -u ( G `  x ) ) ) )
3516, 28, 343eqtr4d 2446 . 2  |-  ( ph  ->  ( F  o F  -  G )  =  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( F `
 x ) )  o F  +  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  -u ( G `  x ) ) ) )
36 inss1 3521 . . . . 5  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  F
37 resmpt 5150 . . . . 5  |-  ( ( dom  F  i^i  dom  G )  C_  dom  F  -> 
( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) ) )
3836, 37mp1i 12 . . . 4  |-  ( ph  ->  ( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) ) )
393feqmptd 5738 . . . . . 6  |-  ( ph  ->  F  =  ( x  e.  dom  F  |->  ( F `  x ) ) )
4039, 1eqeltrrd 2479 . . . . 5  |-  ( ph  ->  ( x  e.  dom  F 
|->  ( F `  x
) )  e. MblFn )
41 mbfres 19489 . . . . 5  |-  ( ( ( x  e.  dom  F 
|->  ( F `  x
) )  e. MblFn  /\  ( dom  F  i^i  dom  G
)  e.  dom  vol )  ->  ( ( x  e.  dom  F  |->  ( F `  x ) )  |`  ( dom  F  i^i  dom  G )
)  e. MblFn )
4240, 30, 41syl2anc 643 . . . 4  |-  ( ph  ->  ( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  e. MblFn
)
4338, 42eqeltrrd 2479 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) )  e. MblFn
)
44 inss2 3522 . . . . . 6  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  G
45 resmpt 5150 . . . . . 6  |-  ( ( dom  F  i^i  dom  G )  C_  dom  G  -> 
( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) ) )
4644, 45mp1i 12 . . . . 5  |-  ( ph  ->  ( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) ) )
4710feqmptd 5738 . . . . . . 7  |-  ( ph  ->  G  =  ( x  e.  dom  G  |->  ( G `  x ) ) )
4847, 8eqeltrrd 2479 . . . . . 6  |-  ( ph  ->  ( x  e.  dom  G 
|->  ( G `  x
) )  e. MblFn )
49 mbfres 19489 . . . . . 6  |-  ( ( ( x  e.  dom  G 
|->  ( G `  x
) )  e. MblFn  /\  ( dom  F  i^i  dom  G
)  e.  dom  vol )  ->  ( ( x  e.  dom  G  |->  ( G `  x ) )  |`  ( dom  F  i^i  dom  G )
)  e. MblFn )
5048, 30, 49syl2anc 643 . . . . 5  |-  ( ph  ->  ( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  e. MblFn
)
5146, 50eqeltrrd 2479 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) )  e. MblFn
)
5213, 51mbfneg 19495 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  -u ( G `  x ) )  e. MblFn
)
5343, 52mbfadd 19506 . 2  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( F `
 x ) )  o F  +  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  -u ( G `  x ) ) )  e. MblFn )
5435, 53eqeltrd 2478 1  |-  ( ph  ->  ( F  o F  -  G )  e. MblFn
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    i^i cin 3279    C_ wss 3280    e. cmpt 4226   dom cdm 4837    |` cres 4839    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    o Fcof 6262   CCcc 8944    + caddc 8949    - cmin 9247   -ucneg 9248   volcvol 19313  MblFncmbf 19459
This theorem is referenced by:  mbfmul  19571  iblulm  20276
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cc 8271  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-xadd 10667  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-sum 12435  df-xmet 16650  df-met 16651  df-ovol 19314  df-vol 19315  df-mbf 19465
  Copyright terms: Public domain W3C validator