MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfsub Structured version   Unicode version

Theorem mbfsub 21099
Description: The difference of two measurable functions is measurable. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
mbfadd.1  |-  ( ph  ->  F  e. MblFn )
mbfadd.2  |-  ( ph  ->  G  e. MblFn )
Assertion
Ref Expression
mbfsub  |-  ( ph  ->  ( F  oF  -  G )  e. MblFn
)

Proof of Theorem mbfsub
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mbfadd.1 . . . . . . . 8  |-  ( ph  ->  F  e. MblFn )
2 mbff 21064 . . . . . . . 8  |-  ( F  e. MblFn  ->  F : dom  F --> CC )
31, 2syl 16 . . . . . . 7  |-  ( ph  ->  F : dom  F --> CC )
4 elin 3536 . . . . . . . 8  |-  ( x  e.  ( dom  F  i^i  dom  G )  <->  ( x  e.  dom  F  /\  x  e.  dom  G ) )
54simplbi 457 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  F )
6 ffvelrn 5838 . . . . . . 7  |-  ( ( F : dom  F --> CC  /\  x  e.  dom  F )  ->  ( F `  x )  e.  CC )
73, 5, 6syl2an 474 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  ( F `  x )  e.  CC )
8 mbfadd.2 . . . . . . . 8  |-  ( ph  ->  G  e. MblFn )
9 mbff 21064 . . . . . . . 8  |-  ( G  e. MblFn  ->  G : dom  G --> CC )
108, 9syl 16 . . . . . . 7  |-  ( ph  ->  G : dom  G --> CC )
114simprbi 461 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  G )
12 ffvelrn 5838 . . . . . . 7  |-  ( ( G : dom  G --> CC  /\  x  e.  dom  G )  ->  ( G `  x )  e.  CC )
1310, 11, 12syl2an 474 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  ( G `  x )  e.  CC )
147, 13negsubd 9721 . . . . 5  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( F `  x
)  +  -u ( G `  x )
)  =  ( ( F `  x )  -  ( G `  x ) ) )
1514eqcomd 2446 . . . 4  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( F `  x
)  -  ( G `
 x ) )  =  ( ( F `
 x )  + 
-u ( G `  x ) ) )
1615mpteq2dva 4375 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  -  ( G `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x )  +  -u ( G `  x ) ) ) )
17 ffn 5556 . . . . 5  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
183, 17syl 16 . . . 4  |-  ( ph  ->  F  Fn  dom  F
)
19 ffn 5556 . . . . 5  |-  ( G : dom  G --> CC  ->  G  Fn  dom  G )
2010, 19syl 16 . . . 4  |-  ( ph  ->  G  Fn  dom  G
)
21 mbfdm 21065 . . . . 5  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
221, 21syl 16 . . . 4  |-  ( ph  ->  dom  F  e.  dom  vol )
23 mbfdm 21065 . . . . 5  |-  ( G  e. MblFn  ->  dom  G  e.  dom  vol )
248, 23syl 16 . . . 4  |-  ( ph  ->  dom  G  e.  dom  vol )
25 eqid 2441 . . . 4  |-  ( dom 
F  i^i  dom  G )  =  ( dom  F  i^i  dom  G )
26 eqidd 2442 . . . 4  |-  ( (
ph  /\  x  e.  dom  F )  ->  ( F `  x )  =  ( F `  x ) )
27 eqidd 2442 . . . 4  |-  ( (
ph  /\  x  e.  dom  G )  ->  ( G `  x )  =  ( G `  x ) )
2818, 20, 22, 24, 25, 26, 27offval 6326 . . 3  |-  ( ph  ->  ( F  oF  -  G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  -  ( G `  x ) ) ) )
29 inmbl 20982 . . . . 5  |-  ( ( dom  F  e.  dom  vol 
/\  dom  G  e.  dom  vol )  ->  ( dom  F  i^i  dom  G
)  e.  dom  vol )
3022, 24, 29syl2anc 656 . . . 4  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  e.  dom  vol )
3113negcld 9702 . . . 4  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  -u ( G `  x )  e.  CC )
32 eqidd 2442 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) ) )
33 eqidd 2442 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  -u ( G `  x ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  -u ( G `  x ) ) )
3430, 7, 31, 32, 33offval2 6335 . . 3  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( F `
 x ) )  oF  +  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  -u ( G `  x ) ) )  =  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x )  +  -u ( G `  x ) ) ) )
3516, 28, 343eqtr4d 2483 . 2  |-  ( ph  ->  ( F  oF  -  G )  =  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( F `
 x ) )  oF  +  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  -u ( G `  x ) ) ) )
36 inss1 3567 . . . . 5  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  F
37 resmpt 5153 . . . . 5  |-  ( ( dom  F  i^i  dom  G )  C_  dom  F  -> 
( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) ) )
3836, 37mp1i 12 . . . 4  |-  ( ph  ->  ( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) ) )
393feqmptd 5741 . . . . . 6  |-  ( ph  ->  F  =  ( x  e.  dom  F  |->  ( F `  x ) ) )
4039, 1eqeltrrd 2516 . . . . 5  |-  ( ph  ->  ( x  e.  dom  F 
|->  ( F `  x
) )  e. MblFn )
41 mbfres 21081 . . . . 5  |-  ( ( ( x  e.  dom  F 
|->  ( F `  x
) )  e. MblFn  /\  ( dom  F  i^i  dom  G
)  e.  dom  vol )  ->  ( ( x  e.  dom  F  |->  ( F `  x ) )  |`  ( dom  F  i^i  dom  G )
)  e. MblFn )
4240, 30, 41syl2anc 656 . . . 4  |-  ( ph  ->  ( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  e. MblFn
)
4338, 42eqeltrrd 2516 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) )  e. MblFn
)
44 inss2 3568 . . . . . 6  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  G
45 resmpt 5153 . . . . . 6  |-  ( ( dom  F  i^i  dom  G )  C_  dom  G  -> 
( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) ) )
4644, 45mp1i 12 . . . . 5  |-  ( ph  ->  ( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) ) )
4710feqmptd 5741 . . . . . . 7  |-  ( ph  ->  G  =  ( x  e.  dom  G  |->  ( G `  x ) ) )
4847, 8eqeltrrd 2516 . . . . . 6  |-  ( ph  ->  ( x  e.  dom  G 
|->  ( G `  x
) )  e. MblFn )
49 mbfres 21081 . . . . . 6  |-  ( ( ( x  e.  dom  G 
|->  ( G `  x
) )  e. MblFn  /\  ( dom  F  i^i  dom  G
)  e.  dom  vol )  ->  ( ( x  e.  dom  G  |->  ( G `  x ) )  |`  ( dom  F  i^i  dom  G )
)  e. MblFn )
5048, 30, 49syl2anc 656 . . . . 5  |-  ( ph  ->  ( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  e. MblFn
)
5146, 50eqeltrrd 2516 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) )  e. MblFn
)
5213, 51mbfneg 21087 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  -u ( G `  x ) )  e. MblFn
)
5343, 52mbfadd 21098 . 2  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( F `
 x ) )  oF  +  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  -u ( G `  x ) ) )  e. MblFn )
5435, 53eqeltrd 2515 1  |-  ( ph  ->  ( F  oF  -  G )  e. MblFn
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761    i^i cin 3324    C_ wss 3325    e. cmpt 4347   dom cdm 4836    |` cres 4838    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090    oFcof 6317   CCcc 9276    + caddc 9281    - cmin 9591   -ucneg 9592   volcvol 20906  MblFncmbf 21053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cc 8600  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-disj 4260  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-omul 6921  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-oi 7720  df-card 8105  df-acn 8108  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-q 10950  df-rp 10988  df-xadd 11086  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-rlim 12963  df-sum 13160  df-xmet 17769  df-met 17770  df-ovol 20907  df-vol 20908  df-mbf 21058
This theorem is referenced by:  mbfmul  21163  iblulm  21831
  Copyright terms: Public domain W3C validator