MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfpos Structured version   Unicode version

Theorem mbfpos 21104
Description: The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.)
Hypotheses
Ref Expression
mbfpos.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
mbfpos.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
Assertion
Ref Expression
mbfpos  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn
)
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem mbfpos
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 c0ex 9372 . . . . . . 7  |-  0  e.  _V
21fvconst2 5928 . . . . . 6  |-  ( x  e.  A  ->  (
( A  X.  {
0 } ) `  x )  =  0 )
32adantl 466 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( A  X.  {
0 } ) `  x )  =  0 )
4 simpr 461 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
5 mbfpos.1 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
6 eqid 2438 . . . . . . 7  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
76fvmpt2 5776 . . . . . 6  |-  ( ( x  e.  A  /\  B  e.  RR )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
84, 5, 7syl2anc 661 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
93, 8breq12d 4300 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( A  X.  { 0 } ) `
 x )  <_ 
( ( x  e.  A  |->  B ) `  x )  <->  0  <_  B ) )
109, 8, 3ifbieq12d 3811 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  if ( ( ( A  X.  { 0 } ) `  x )  <_  ( ( x  e.  A  |->  B ) `
 x ) ,  ( ( x  e.  A  |->  B ) `  x ) ,  ( ( A  X.  {
0 } ) `  x ) )  =  if ( 0  <_  B ,  B , 
0 ) )
1110mpteq2dva 4373 . 2  |-  ( ph  ->  ( x  e.  A  |->  if ( ( ( A  X.  { 0 } ) `  x
)  <_  ( (
x  e.  A  |->  B ) `  x ) ,  ( ( x  e.  A  |->  B ) `
 x ) ,  ( ( A  X.  { 0 } ) `
 x ) ) )  =  ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) )
12 0re 9378 . . . . 5  |-  0  e.  RR
1312fconst6 5595 . . . 4  |-  ( A  X.  { 0 } ) : A --> RR
1413a1i 11 . . 3  |-  ( ph  ->  ( A  X.  {
0 } ) : A --> RR )
15 mbfpos.2 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
1615, 5mbfdm2 21091 . . . 4  |-  ( ph  ->  A  e.  dom  vol )
17 0cnd 9371 . . . 4  |-  ( ph  ->  0  e.  CC )
18 mbfconst 21088 . . . 4  |-  ( ( A  e.  dom  vol  /\  0  e.  CC )  ->  ( A  X.  { 0 } )  e. MblFn )
1916, 17, 18syl2anc 661 . . 3  |-  ( ph  ->  ( A  X.  {
0 } )  e. MblFn
)
205, 6fmptd 5862 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> RR )
21 nfcv 2574 . . . 4  |-  F/_ y if ( ( ( A  X.  { 0 } ) `  x )  <_  ( ( x  e.  A  |->  B ) `
 x ) ,  ( ( x  e.  A  |->  B ) `  x ) ,  ( ( A  X.  {
0 } ) `  x ) )
22 nfcv 2574 . . . . . 6  |-  F/_ x
( ( A  X.  { 0 } ) `
 y )
23 nfcv 2574 . . . . . 6  |-  F/_ x  <_
24 nffvmpt1 5694 . . . . . 6  |-  F/_ x
( ( x  e.  A  |->  B ) `  y )
2522, 23, 24nfbr 4331 . . . . 5  |-  F/ x
( ( A  X.  { 0 } ) `
 y )  <_ 
( ( x  e.  A  |->  B ) `  y )
2625, 24, 22nfif 3813 . . . 4  |-  F/_ x if ( ( ( A  X.  { 0 } ) `  y )  <_  ( ( x  e.  A  |->  B ) `
 y ) ,  ( ( x  e.  A  |->  B ) `  y ) ,  ( ( A  X.  {
0 } ) `  y ) )
27 fveq2 5686 . . . . . 6  |-  ( x  =  y  ->  (
( A  X.  {
0 } ) `  x )  =  ( ( A  X.  {
0 } ) `  y ) )
28 fveq2 5686 . . . . . 6  |-  ( x  =  y  ->  (
( x  e.  A  |->  B ) `  x
)  =  ( ( x  e.  A  |->  B ) `  y ) )
2927, 28breq12d 4300 . . . . 5  |-  ( x  =  y  ->  (
( ( A  X.  { 0 } ) `
 x )  <_ 
( ( x  e.  A  |->  B ) `  x )  <->  ( ( A  X.  { 0 } ) `  y )  <_  ( ( x  e.  A  |->  B ) `
 y ) ) )
3029, 28, 27ifbieq12d 3811 . . . 4  |-  ( x  =  y  ->  if ( ( ( A  X.  { 0 } ) `  x )  <_  ( ( x  e.  A  |->  B ) `
 x ) ,  ( ( x  e.  A  |->  B ) `  x ) ,  ( ( A  X.  {
0 } ) `  x ) )  =  if ( ( ( A  X.  { 0 } ) `  y
)  <_  ( (
x  e.  A  |->  B ) `  y ) ,  ( ( x  e.  A  |->  B ) `
 y ) ,  ( ( A  X.  { 0 } ) `
 y ) ) )
3121, 26, 30cbvmpt 4377 . . 3  |-  ( x  e.  A  |->  if ( ( ( A  X.  { 0 } ) `
 x )  <_ 
( ( x  e.  A  |->  B ) `  x ) ,  ( ( x  e.  A  |->  B ) `  x
) ,  ( ( A  X.  { 0 } ) `  x
) ) )  =  ( y  e.  A  |->  if ( ( ( A  X.  { 0 } ) `  y
)  <_  ( (
x  e.  A  |->  B ) `  y ) ,  ( ( x  e.  A  |->  B ) `
 y ) ,  ( ( A  X.  { 0 } ) `
 y ) ) )
3214, 19, 20, 15, 31mbfmax 21102 . 2  |-  ( ph  ->  ( x  e.  A  |->  if ( ( ( A  X.  { 0 } ) `  x
)  <_  ( (
x  e.  A  |->  B ) `  x ) ,  ( ( x  e.  A  |->  B ) `
 x ) ,  ( ( A  X.  { 0 } ) `
 x ) ) )  e. MblFn )
3311, 32eqeltrrd 2513 1  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   ifcif 3786   {csn 3872   class class class wbr 4287    e. cmpt 4345    X. cxp 4833   dom cdm 4835   -->wf 5409   ` cfv 5413   CCcc 9272   RRcr 9273   0cc0 9274    <_ cle 9411   volcvol 20922  MblFncmbf 21069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-rp 10984  df-xadd 11082  df-ioo 11296  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-sum 13156  df-xmet 17785  df-met 17786  df-ovol 20923  df-vol 20924  df-mbf 21074
This theorem is referenced by:  mbfposb  21106  mbfi1flimlem  21175  itgreval  21249  ibladdlem  21272  iblabslem  21280  mbfposadd  28392  ibladdnclem  28401  iblabsnclem  28408  itgmulc2nclem2  28412
  Copyright terms: Public domain W3C validator