MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2 Structured version   Unicode version

Theorem mbfmulc2 21915
Description: A complex constant times a measurable function is measurable. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
mbfmulc2.1  |-  ( ph  ->  C  e.  CC )
mbfmulc2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
mbfmulc2.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
Assertion
Ref Expression
mbfmulc2  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e. MblFn )
Distinct variable groups:    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem mbfmulc2
StepHypRef Expression
1 mbfmulc2.3 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
2 mbfmulc2.2 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
31, 2mbfdm2 21890 . . . . 5  |-  ( ph  ->  A  e.  dom  vol )
4 mbfmulc2.1 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
54recld 13002 . . . . . . . 8  |-  ( ph  ->  ( Re `  C
)  e.  RR )
65adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  RR )
76recnd 9632 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  CC )
81, 2mbfmptcl 21889 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
98recld 13002 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
109recnd 9632 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  CC )
117, 10mulcld 9626 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( Re `  C
)  x.  ( Re
`  B ) )  e.  CC )
12 ovex 6319 . . . . . 6  |-  ( -u ( Im `  C )  x.  ( Im `  B ) )  e. 
_V
1312a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( -u ( Im `  C
)  x.  ( Im
`  B ) )  e.  _V )
14 fconstmpt 5048 . . . . . . 7  |-  ( A  X.  { ( Re
`  C ) } )  =  ( x  e.  A  |->  ( Re
`  C ) )
1514a1i 11 . . . . . 6  |-  ( ph  ->  ( A  X.  {
( Re `  C
) } )  =  ( x  e.  A  |->  ( Re `  C
) ) )
16 eqidd 2468 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  =  ( x  e.  A  |->  ( Re `  B ) ) )
173, 6, 9, 15, 16offval2 6550 . . . . 5  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  =  ( x  e.  A  |->  ( ( Re `  C
)  x.  ( Re
`  B ) ) ) )
184imcld 13003 . . . . . . . 8  |-  ( ph  ->  ( Im `  C
)  e.  RR )
1918renegcld 9996 . . . . . . 7  |-  ( ph  -> 
-u ( Im `  C )  e.  RR )
2019adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Im `  C )  e.  RR )
218imcld 13003 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
22 fconstmpt 5048 . . . . . . 7  |-  ( A  X.  { -u (
Im `  C ) } )  =  ( x  e.  A  |->  -u ( Im `  C ) )
2322a1i 11 . . . . . 6  |-  ( ph  ->  ( A  X.  { -u ( Im `  C
) } )  =  ( x  e.  A  |-> 
-u ( Im `  C ) ) )
24 eqidd 2468 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  =  ( x  e.  A  |->  ( Im `  B ) ) )
253, 20, 21, 23, 24offval2 6550 . . . . 5  |-  ( ph  ->  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  =  ( x  e.  A  |->  (
-u ( Im `  C )  x.  (
Im `  B )
) ) )
263, 11, 13, 17, 25offval2 6550 . . . 4  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B
) ) )  oF  +  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B ) ) ) )  =  ( x  e.  A  |->  ( ( ( Re `  C
)  x.  ( Re
`  B ) )  +  ( -u (
Im `  C )  x.  ( Im `  B
) ) ) ) )
2718adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  RR )
2827recnd 9632 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  CC )
2921recnd 9632 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  CC )
3028, 29mulcld 9626 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( Im `  C
)  x.  ( Im
`  B ) )  e.  CC )
3111, 30negsubd 9946 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( Re `  C )  x.  (
Re `  B )
)  +  -u (
( Im `  C
)  x.  ( Im
`  B ) ) )  =  ( ( ( Re `  C
)  x.  ( Re
`  B ) )  -  ( ( Im
`  C )  x.  ( Im `  B
) ) ) )
3228, 29mulneg1d 10019 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( -u ( Im `  C
)  x.  ( Im
`  B ) )  =  -u ( ( Im
`  C )  x.  ( Im `  B
) ) )
3332oveq2d 6310 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( Re `  C )  x.  (
Re `  B )
)  +  ( -u ( Im `  C )  x.  ( Im `  B ) ) )  =  ( ( ( Re `  C )  x.  ( Re `  B ) )  + 
-u ( ( Im
`  C )  x.  ( Im `  B
) ) ) )
344adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
3534, 8remuld 13026 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( C  x.  B ) )  =  ( ( ( Re
`  C )  x.  ( Re `  B
) )  -  (
( Im `  C
)  x.  ( Im
`  B ) ) ) )
3631, 33, 353eqtr4d 2518 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( Re `  C )  x.  (
Re `  B )
)  +  ( -u ( Im `  C )  x.  ( Im `  B ) ) )  =  ( Re `  ( C  x.  B
) ) )
3736mpteq2dva 4538 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( ( ( Re
`  C )  x.  ( Re `  B
) )  +  (
-u ( Im `  C )  x.  (
Im `  B )
) ) )  =  ( x  e.  A  |->  ( Re `  ( C  x.  B )
) ) )
3826, 37eqtrd 2508 . . 3  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B
) ) )  oF  +  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B ) ) ) )  =  ( x  e.  A  |->  ( Re
`  ( C  x.  B ) ) ) )
398ismbfcn2 21891 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  <->  ( ( x  e.  A  |->  ( Re `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  B ) )  e. MblFn ) ) )
401, 39mpbid 210 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e. MblFn  /\  ( x  e.  A  |->  ( Im `  B
) )  e. MblFn )
)
4140simpld 459 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e. MblFn )
42 eqid 2467 . . . . . 6  |-  ( x  e.  A  |->  ( Re
`  B ) )  =  ( x  e.  A  |->  ( Re `  B ) )
4310, 42fmptd 6055 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) ) : A --> CC )
4441, 5, 43mbfmulc2re 21900 . . . 4  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  e. MblFn )
4540simprd 463 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e. MblFn )
46 eqid 2467 . . . . . 6  |-  ( x  e.  A  |->  ( Im
`  B ) )  =  ( x  e.  A  |->  ( Im `  B ) )
4729, 46fmptd 6055 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) ) : A --> CC )
4845, 19, 47mbfmulc2re 21900 . . . 4  |-  ( ph  ->  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  e. MblFn )
4944, 48mbfadd 21913 . . 3  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B
) ) )  oF  +  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B ) ) ) )  e. MblFn )
5038, 49eqeltrrd 2556 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  ( C  x.  B )
) )  e. MblFn )
51 ovex 6319 . . . . . 6  |-  ( ( Re `  C )  x.  ( Im `  B ) )  e. 
_V
5251a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( Re `  C
)  x.  ( Im
`  B ) )  e.  _V )
53 ovex 6319 . . . . . 6  |-  ( ( Im `  C )  x.  ( Re `  B ) )  e. 
_V
5453a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( Im `  C
)  x.  ( Re
`  B ) )  e.  _V )
553, 6, 21, 15, 24offval2 6550 . . . . 5  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  =  ( x  e.  A  |->  ( ( Re `  C
)  x.  ( Im
`  B ) ) ) )
56 fconstmpt 5048 . . . . . . 7  |-  ( A  X.  { ( Im
`  C ) } )  =  ( x  e.  A  |->  ( Im
`  C ) )
5756a1i 11 . . . . . 6  |-  ( ph  ->  ( A  X.  {
( Im `  C
) } )  =  ( x  e.  A  |->  ( Im `  C
) ) )
583, 27, 9, 57, 16offval2 6550 . . . . 5  |-  ( ph  ->  ( ( A  X.  { ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  =  ( x  e.  A  |->  ( ( Im `  C
)  x.  ( Re
`  B ) ) ) )
593, 52, 54, 55, 58offval2 6550 . . . 4  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B
) ) )  oF  +  ( ( A  X.  { ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B ) ) ) )  =  ( x  e.  A  |->  ( ( ( Re `  C
)  x.  ( Im
`  B ) )  +  ( ( Im
`  C )  x.  ( Re `  B
) ) ) ) )
6034, 8immuld 13027 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  ( C  x.  B ) )  =  ( ( ( Re
`  C )  x.  ( Im `  B
) )  +  ( ( Im `  C
)  x.  ( Re
`  B ) ) ) )
6160mpteq2dva 4538 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  ( C  x.  B )
) )  =  ( x  e.  A  |->  ( ( ( Re `  C )  x.  (
Im `  B )
)  +  ( ( Im `  C )  x.  ( Re `  B ) ) ) ) )
6259, 61eqtr4d 2511 . . 3  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B
) ) )  oF  +  ( ( A  X.  { ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B ) ) ) )  =  ( x  e.  A  |->  ( Im
`  ( C  x.  B ) ) ) )
6345, 5, 47mbfmulc2re 21900 . . . 4  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  e. MblFn )
6441, 18, 43mbfmulc2re 21900 . . . 4  |-  ( ph  ->  ( ( A  X.  { ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  e. MblFn )
6563, 64mbfadd 21913 . . 3  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B
) ) )  oF  +  ( ( A  X.  { ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B ) ) ) )  e. MblFn )
6662, 65eqeltrrd 2556 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  ( C  x.  B )
) )  e. MblFn )
6734, 8mulcld 9626 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( C  x.  B )  e.  CC )
6867ismbfcn2 21891 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( C  x.  B ) )  e. MblFn  <->  ( ( x  e.  A  |->  ( Re `  ( C  x.  B )
) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  ( C  x.  B ) ) )  e. MblFn ) ) )
6950, 66, 68mpbir2and 920 1  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e. MblFn )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3118   {csn 4032    |-> cmpt 4510    X. cxp 5002   dom cdm 5004   ` cfv 5593  (class class class)co 6294    oFcof 6532   CCcc 9500   RRcr 9501    + caddc 9505    x. cmul 9507    - cmin 9815   -ucneg 9816   Recre 12905   Imcim 12906   volcvol 21720  MblFncmbf 21868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-inf2 8068  ax-cc 8825  ax-cnex 9558  ax-resscn 9559  ax-1cn 9560  ax-icn 9561  ax-addcl 9562  ax-addrcl 9563  ax-mulcl 9564  ax-mulrcl 9565  ax-mulcom 9566  ax-addass 9567  ax-mulass 9568  ax-distr 9569  ax-i2m1 9570  ax-1ne0 9571  ax-1rid 9572  ax-rnegex 9573  ax-rrecex 9574  ax-cnre 9575  ax-pre-lttri 9576  ax-pre-lttrn 9577  ax-pre-ltadd 9578  ax-pre-mulgt0 9579  ax-pre-sup 9580
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4251  df-int 4288  df-iun 4332  df-disj 4423  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-se 4844  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-isom 5602  df-riota 6255  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-of 6534  df-om 6695  df-1st 6794  df-2nd 6795  df-recs 7052  df-rdg 7086  df-1o 7140  df-2o 7141  df-oadd 7144  df-omul 7145  df-er 7321  df-map 7432  df-pm 7433  df-en 7527  df-dom 7528  df-sdom 7529  df-fin 7530  df-sup 7911  df-oi 7945  df-card 8330  df-acn 8333  df-cda 8558  df-pnf 9640  df-mnf 9641  df-xr 9642  df-ltxr 9643  df-le 9644  df-sub 9817  df-neg 9818  df-div 10217  df-nn 10547  df-2 10604  df-3 10605  df-n0 10806  df-z 10875  df-uz 11093  df-q 11193  df-rp 11231  df-xadd 11329  df-ioo 11543  df-ioc 11544  df-ico 11545  df-icc 11546  df-fz 11683  df-fzo 11803  df-fl 11907  df-seq 12086  df-exp 12145  df-hash 12384  df-cj 12907  df-re 12908  df-im 12909  df-sqrt 13043  df-abs 13044  df-clim 13286  df-rlim 13287  df-sum 13484  df-xmet 18259  df-met 18260  df-ovol 21721  df-vol 21722  df-mbf 21873
This theorem is referenced by:  iblmulc2  22082
  Copyright terms: Public domain W3C validator