MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2 Structured version   Unicode version

Theorem mbfmulc2 21041
Description: A complex constant times a measurable function is measurable. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
mbfmulc2.1  |-  ( ph  ->  C  e.  CC )
mbfmulc2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
mbfmulc2.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
Assertion
Ref Expression
mbfmulc2  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e. MblFn )
Distinct variable groups:    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem mbfmulc2
StepHypRef Expression
1 mbfmulc2.3 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
2 mbfmulc2.2 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
31, 2mbfdm2 21016 . . . . 5  |-  ( ph  ->  A  e.  dom  vol )
4 mbfmulc2.1 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
54recld 12679 . . . . . . . 8  |-  ( ph  ->  ( Re `  C
)  e.  RR )
65adantr 462 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  RR )
76recnd 9408 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  CC )
81, 2mbfmptcl 21015 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
98recld 12679 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
109recnd 9408 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  CC )
117, 10mulcld 9402 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( Re `  C
)  x.  ( Re
`  B ) )  e.  CC )
12 ovex 6115 . . . . . 6  |-  ( -u ( Im `  C )  x.  ( Im `  B ) )  e. 
_V
1312a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( -u ( Im `  C
)  x.  ( Im
`  B ) )  e.  _V )
14 fconstmpt 4878 . . . . . . 7  |-  ( A  X.  { ( Re
`  C ) } )  =  ( x  e.  A  |->  ( Re
`  C ) )
1514a1i 11 . . . . . 6  |-  ( ph  ->  ( A  X.  {
( Re `  C
) } )  =  ( x  e.  A  |->  ( Re `  C
) ) )
16 eqidd 2442 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  =  ( x  e.  A  |->  ( Re `  B ) ) )
173, 6, 9, 15, 16offval2 6335 . . . . 5  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  =  ( x  e.  A  |->  ( ( Re `  C
)  x.  ( Re
`  B ) ) ) )
184imcld 12680 . . . . . . . 8  |-  ( ph  ->  ( Im `  C
)  e.  RR )
1918renegcld 9771 . . . . . . 7  |-  ( ph  -> 
-u ( Im `  C )  e.  RR )
2019adantr 462 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Im `  C )  e.  RR )
218imcld 12680 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
22 fconstmpt 4878 . . . . . . 7  |-  ( A  X.  { -u (
Im `  C ) } )  =  ( x  e.  A  |->  -u ( Im `  C ) )
2322a1i 11 . . . . . 6  |-  ( ph  ->  ( A  X.  { -u ( Im `  C
) } )  =  ( x  e.  A  |-> 
-u ( Im `  C ) ) )
24 eqidd 2442 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  =  ( x  e.  A  |->  ( Im `  B ) ) )
253, 20, 21, 23, 24offval2 6335 . . . . 5  |-  ( ph  ->  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  =  ( x  e.  A  |->  (
-u ( Im `  C )  x.  (
Im `  B )
) ) )
263, 11, 13, 17, 25offval2 6335 . . . 4  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B
) ) )  oF  +  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B ) ) ) )  =  ( x  e.  A  |->  ( ( ( Re `  C
)  x.  ( Re
`  B ) )  +  ( -u (
Im `  C )  x.  ( Im `  B
) ) ) ) )
2718adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  RR )
2827recnd 9408 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  CC )
2921recnd 9408 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  CC )
3028, 29mulcld 9402 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( Im `  C
)  x.  ( Im
`  B ) )  e.  CC )
3111, 30negsubd 9721 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( Re `  C )  x.  (
Re `  B )
)  +  -u (
( Im `  C
)  x.  ( Im
`  B ) ) )  =  ( ( ( Re `  C
)  x.  ( Re
`  B ) )  -  ( ( Im
`  C )  x.  ( Im `  B
) ) ) )
3228, 29mulneg1d 9793 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( -u ( Im `  C
)  x.  ( Im
`  B ) )  =  -u ( ( Im
`  C )  x.  ( Im `  B
) ) )
3332oveq2d 6106 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( Re `  C )  x.  (
Re `  B )
)  +  ( -u ( Im `  C )  x.  ( Im `  B ) ) )  =  ( ( ( Re `  C )  x.  ( Re `  B ) )  + 
-u ( ( Im
`  C )  x.  ( Im `  B
) ) ) )
344adantr 462 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
3534, 8remuld 12703 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( C  x.  B ) )  =  ( ( ( Re
`  C )  x.  ( Re `  B
) )  -  (
( Im `  C
)  x.  ( Im
`  B ) ) ) )
3631, 33, 353eqtr4d 2483 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( Re `  C )  x.  (
Re `  B )
)  +  ( -u ( Im `  C )  x.  ( Im `  B ) ) )  =  ( Re `  ( C  x.  B
) ) )
3736mpteq2dva 4375 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( ( ( Re
`  C )  x.  ( Re `  B
) )  +  (
-u ( Im `  C )  x.  (
Im `  B )
) ) )  =  ( x  e.  A  |->  ( Re `  ( C  x.  B )
) ) )
3826, 37eqtrd 2473 . . 3  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B
) ) )  oF  +  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B ) ) ) )  =  ( x  e.  A  |->  ( Re
`  ( C  x.  B ) ) ) )
398ismbfcn2 21017 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  <->  ( ( x  e.  A  |->  ( Re `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  B ) )  e. MblFn ) ) )
401, 39mpbid 210 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e. MblFn  /\  ( x  e.  A  |->  ( Im `  B
) )  e. MblFn )
)
4140simpld 456 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e. MblFn )
42 eqid 2441 . . . . . 6  |-  ( x  e.  A  |->  ( Re
`  B ) )  =  ( x  e.  A  |->  ( Re `  B ) )
4310, 42fmptd 5864 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) ) : A --> CC )
4441, 5, 43mbfmulc2re 21026 . . . 4  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  e. MblFn )
4540simprd 460 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e. MblFn )
46 eqid 2441 . . . . . 6  |-  ( x  e.  A  |->  ( Im
`  B ) )  =  ( x  e.  A  |->  ( Im `  B ) )
4729, 46fmptd 5864 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) ) : A --> CC )
4845, 19, 47mbfmulc2re 21026 . . . 4  |-  ( ph  ->  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  e. MblFn )
4944, 48mbfadd 21039 . . 3  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B
) ) )  oF  +  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B ) ) ) )  e. MblFn )
5038, 49eqeltrrd 2516 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  ( C  x.  B )
) )  e. MblFn )
51 ovex 6115 . . . . . 6  |-  ( ( Re `  C )  x.  ( Im `  B ) )  e. 
_V
5251a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( Re `  C
)  x.  ( Im
`  B ) )  e.  _V )
53 ovex 6115 . . . . . 6  |-  ( ( Im `  C )  x.  ( Re `  B ) )  e. 
_V
5453a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( Im `  C
)  x.  ( Re
`  B ) )  e.  _V )
553, 6, 21, 15, 24offval2 6335 . . . . 5  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  =  ( x  e.  A  |->  ( ( Re `  C
)  x.  ( Im
`  B ) ) ) )
56 fconstmpt 4878 . . . . . . 7  |-  ( A  X.  { ( Im
`  C ) } )  =  ( x  e.  A  |->  ( Im
`  C ) )
5756a1i 11 . . . . . 6  |-  ( ph  ->  ( A  X.  {
( Im `  C
) } )  =  ( x  e.  A  |->  ( Im `  C
) ) )
583, 27, 9, 57, 16offval2 6335 . . . . 5  |-  ( ph  ->  ( ( A  X.  { ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  =  ( x  e.  A  |->  ( ( Im `  C
)  x.  ( Re
`  B ) ) ) )
593, 52, 54, 55, 58offval2 6335 . . . 4  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B
) ) )  oF  +  ( ( A  X.  { ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B ) ) ) )  =  ( x  e.  A  |->  ( ( ( Re `  C
)  x.  ( Im
`  B ) )  +  ( ( Im
`  C )  x.  ( Re `  B
) ) ) ) )
6034, 8immuld 12704 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  ( C  x.  B ) )  =  ( ( ( Re
`  C )  x.  ( Im `  B
) )  +  ( ( Im `  C
)  x.  ( Re
`  B ) ) ) )
6160mpteq2dva 4375 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  ( C  x.  B )
) )  =  ( x  e.  A  |->  ( ( ( Re `  C )  x.  (
Im `  B )
)  +  ( ( Im `  C )  x.  ( Re `  B ) ) ) ) )
6259, 61eqtr4d 2476 . . 3  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B
) ) )  oF  +  ( ( A  X.  { ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B ) ) ) )  =  ( x  e.  A  |->  ( Im
`  ( C  x.  B ) ) ) )
6345, 5, 47mbfmulc2re 21026 . . . 4  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  e. MblFn )
6441, 18, 43mbfmulc2re 21026 . . . 4  |-  ( ph  ->  ( ( A  X.  { ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  e. MblFn )
6563, 64mbfadd 21039 . . 3  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B
) ) )  oF  +  ( ( A  X.  { ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B ) ) ) )  e. MblFn )
6662, 65eqeltrrd 2516 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  ( C  x.  B )
) )  e. MblFn )
6734, 8mulcld 9402 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( C  x.  B )  e.  CC )
6867ismbfcn2 21017 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( C  x.  B ) )  e. MblFn  <->  ( ( x  e.  A  |->  ( Re `  ( C  x.  B )
) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  ( C  x.  B ) ) )  e. MblFn ) ) )
6950, 66, 68mpbir2and 908 1  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e. MblFn )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   _Vcvv 2970   {csn 3874    e. cmpt 4347    X. cxp 4834   dom cdm 4836   ` cfv 5415  (class class class)co 6090    oFcof 6317   CCcc 9276   RRcr 9277    + caddc 9281    x. cmul 9283    - cmin 9591   -ucneg 9592   Recre 12582   Imcim 12583   volcvol 20847  MblFncmbf 20994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cc 8600  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-disj 4260  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-omul 6921  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-oi 7720  df-card 8105  df-acn 8108  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-q 10950  df-rp 10988  df-xadd 11086  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-rlim 12963  df-sum 13160  df-xmet 17710  df-met 17711  df-ovol 20848  df-vol 20849  df-mbf 20999
This theorem is referenced by:  iblmulc2  21208
  Copyright terms: Public domain W3C validator