MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmul Structured version   Unicode version

Theorem mbfmul 21046
Description: The product of two measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1  |-  ( ph  ->  F  e. MblFn )
mbfmul.2  |-  ( ph  ->  G  e. MblFn )
Assertion
Ref Expression
mbfmul  |-  ( ph  ->  ( F  oF  x.  G )  e. MblFn
)

Proof of Theorem mbfmul
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mbfmul.1 . . . . 5  |-  ( ph  ->  F  e. MblFn )
2 mbff 20947 . . . . 5  |-  ( F  e. MblFn  ->  F : dom  F --> CC )
31, 2syl 16 . . . 4  |-  ( ph  ->  F : dom  F --> CC )
4 ffn 5547 . . . 4  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
53, 4syl 16 . . 3  |-  ( ph  ->  F  Fn  dom  F
)
6 mbfmul.2 . . . . 5  |-  ( ph  ->  G  e. MblFn )
7 mbff 20947 . . . . 5  |-  ( G  e. MblFn  ->  G : dom  G --> CC )
86, 7syl 16 . . . 4  |-  ( ph  ->  G : dom  G --> CC )
9 ffn 5547 . . . 4  |-  ( G : dom  G --> CC  ->  G  Fn  dom  G )
108, 9syl 16 . . 3  |-  ( ph  ->  G  Fn  dom  G
)
11 mbfdm 20948 . . . 4  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
121, 11syl 16 . . 3  |-  ( ph  ->  dom  F  e.  dom  vol )
13 mbfdm 20948 . . . 4  |-  ( G  e. MblFn  ->  dom  G  e.  dom  vol )
146, 13syl 16 . . 3  |-  ( ph  ->  dom  G  e.  dom  vol )
15 eqid 2433 . . 3  |-  ( dom 
F  i^i  dom  G )  =  ( dom  F  i^i  dom  G )
16 eqidd 2434 . . 3  |-  ( (
ph  /\  x  e.  dom  F )  ->  ( F `  x )  =  ( F `  x ) )
17 eqidd 2434 . . 3  |-  ( (
ph  /\  x  e.  dom  G )  ->  ( G `  x )  =  ( G `  x ) )
185, 10, 12, 14, 15, 16, 17offval 6316 . 2  |-  ( ph  ->  ( F  oF  x.  G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  x.  ( G `  x
) ) ) )
19 elin 3527 . . . . . . . . 9  |-  ( x  e.  ( dom  F  i^i  dom  G )  <->  ( x  e.  dom  F  /\  x  e.  dom  G ) )
2019simplbi 457 . . . . . . . 8  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  F )
21 ffvelrn 5829 . . . . . . . 8  |-  ( ( F : dom  F --> CC  /\  x  e.  dom  F )  ->  ( F `  x )  e.  CC )
223, 20, 21syl2an 474 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  ( F `  x )  e.  CC )
2319simprbi 461 . . . . . . . 8  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  G )
24 ffvelrn 5829 . . . . . . . 8  |-  ( ( G : dom  G --> CC  /\  x  e.  dom  G )  ->  ( G `  x )  e.  CC )
258, 23, 24syl2an 474 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  ( G `  x )  e.  CC )
2622, 25remuld 12691 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Re `  ( ( F `  x )  x.  ( G `  x
) ) )  =  ( ( ( Re
`  ( F `  x ) )  x.  ( Re `  ( G `  x )
) )  -  (
( Im `  ( F `  x )
)  x.  ( Im
`  ( G `  x ) ) ) ) )
2726mpteq2dva 4366 . . . . 5  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( ( F `  x )  x.  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( ( Re `  ( F `
 x ) )  x.  ( Re `  ( G `  x ) ) )  -  (
( Im `  ( F `  x )
)  x.  ( Im
`  ( G `  x ) ) ) ) ) )
28 inmbl 20865 . . . . . . 7  |-  ( ( dom  F  e.  dom  vol 
/\  dom  G  e.  dom  vol )  ->  ( dom  F  i^i  dom  G
)  e.  dom  vol )
2912, 14, 28syl2anc 654 . . . . . 6  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  e.  dom  vol )
30 ovex 6105 . . . . . . 7  |-  ( ( Re `  ( F `
 x ) )  x.  ( Re `  ( G `  x ) ) )  e.  _V
3130a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( Re `  ( F `  x )
)  x.  ( Re
`  ( G `  x ) ) )  e.  _V )
32 ovex 6105 . . . . . . 7  |-  ( ( Im `  ( F `
 x ) )  x.  ( Im `  ( G `  x ) ) )  e.  _V
3332a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( Im `  ( F `  x )
)  x.  ( Im
`  ( G `  x ) ) )  e.  _V )
3422recld 12667 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Re `  ( F `  x ) )  e.  RR )
3525recld 12667 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Re `  ( G `  x ) )  e.  RR )
36 eqidd 2434 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( F `  x )
) ) )
37 eqidd 2434 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )
3829, 34, 35, 36, 37offval2 6325 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( Re
`  ( F `  x ) )  x.  ( Re `  ( G `  x )
) ) ) )
3922imcld 12668 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Im `  ( F `  x ) )  e.  RR )
4025imcld 12668 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Im `  ( G `  x ) )  e.  RR )
41 eqidd 2434 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) ) )
42 eqidd 2434 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )
4329, 39, 40, 41, 42offval2 6325 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( Im
`  ( F `  x ) )  x.  ( Im `  ( G `  x )
) ) ) )
4429, 31, 33, 38, 43offval2 6325 . . . . 5  |-  ( ph  ->  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) ) )  oF  -  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( ( Re
`  ( F `  x ) )  x.  ( Re `  ( G `  x )
) )  -  (
( Im `  ( F `  x )
)  x.  ( Im
`  ( G `  x ) ) ) ) ) )
4527, 44eqtr4d 2468 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( ( F `  x )  x.  ( G `  x )
) ) )  =  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) ) )  oF  -  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) ) ) ) )
46 inss1 3558 . . . . . . . . . 10  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  F
47 resmpt 5144 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  C_  dom  F  -> 
( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) ) )
4846, 47ax-mp 5 . . . . . . . . 9  |-  ( ( x  e.  dom  F  |->  ( F `  x
) )  |`  ( dom  F  i^i  dom  G
) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( F `  x
) )
493feqmptd 5732 . . . . . . . . . . 11  |-  ( ph  ->  F  =  ( x  e.  dom  F  |->  ( F `  x ) ) )
5049, 1eqeltrrd 2508 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  F 
|->  ( F `  x
) )  e. MblFn )
51 mbfres 20964 . . . . . . . . . 10  |-  ( ( ( x  e.  dom  F 
|->  ( F `  x
) )  e. MblFn  /\  ( dom  F  i^i  dom  G
)  e.  dom  vol )  ->  ( ( x  e.  dom  F  |->  ( F `  x ) )  |`  ( dom  F  i^i  dom  G )
)  e. MblFn )
5250, 29, 51syl2anc 654 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  e. MblFn
)
5348, 52syl5eqelr 2518 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) )  e. MblFn
)
5422ismbfcn2 20959 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( F `
 x ) )  e. MblFn 
<->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  e. MblFn ) ) )
5553, 54mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  e. MblFn ) )
5655simpld 456 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `  x ) ) )  e. MblFn )
57 inss2 3559 . . . . . . . . . 10  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  G
58 resmpt 5144 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  C_  dom  G  -> 
( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) ) )
5957, 58ax-mp 5 . . . . . . . . 9  |-  ( ( x  e.  dom  G  |->  ( G `  x
) )  |`  ( dom  F  i^i  dom  G
) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( G `  x
) )
608feqmptd 5732 . . . . . . . . . . 11  |-  ( ph  ->  G  =  ( x  e.  dom  G  |->  ( G `  x ) ) )
6160, 6eqeltrrd 2508 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  G 
|->  ( G `  x
) )  e. MblFn )
62 mbfres 20964 . . . . . . . . . 10  |-  ( ( ( x  e.  dom  G 
|->  ( G `  x
) )  e. MblFn  /\  ( dom  F  i^i  dom  G
)  e.  dom  vol )  ->  ( ( x  e.  dom  G  |->  ( G `  x ) )  |`  ( dom  F  i^i  dom  G )
)  e. MblFn )
6361, 29, 62syl2anc 654 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  e. MblFn
)
6459, 63syl5eqelr 2518 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) )  e. MblFn
)
6525ismbfcn2 20959 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( G `
 x ) )  e. MblFn 
<->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) )  e. MblFn ) ) )
6664, 65mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) )  e. MblFn ) )
6766simpld 456 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) )  e. MblFn )
68 eqid 2433 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )
6934, 68fmptd 5855 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `  x ) ) ) : ( dom  F  i^i  dom  G ) --> RR )
70 eqid 2433 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `
 x ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `
 x ) ) )
7135, 70fmptd 5855 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) ) : ( dom  F  i^i  dom  G ) --> RR )
7256, 67, 69, 71mbfmullem 21045 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )  e. MblFn
)
7355simprd 460 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `  x ) ) )  e. MblFn )
7466simprd 460 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) )  e. MblFn )
75 eqid 2433 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `
 x ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `
 x ) ) )
7639, 75fmptd 5855 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `  x ) ) ) : ( dom  F  i^i  dom  G ) --> RR )
77 eqid 2433 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `
 x ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `
 x ) ) )
7840, 77fmptd 5855 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) ) : ( dom  F  i^i  dom  G ) --> RR )
7973, 74, 76, 78mbfmullem 21045 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )  e. MblFn
)
8072, 79mbfsub 20982 . . . 4  |-  ( ph  ->  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) ) )  oF  -  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) ) ) )  e. MblFn )
8145, 80eqeltrd 2507 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( ( F `  x )  x.  ( G `  x )
) ) )  e. MblFn
)
8222, 25immuld 12692 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Im `  ( ( F `  x )  x.  ( G `  x
) ) )  =  ( ( ( Re
`  ( F `  x ) )  x.  ( Im `  ( G `  x )
) )  +  ( ( Im `  ( F `  x )
)  x.  ( Re
`  ( G `  x ) ) ) ) )
8382mpteq2dva 4366 . . . . 5  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( ( F `  x )  x.  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( ( Re `  ( F `
 x ) )  x.  ( Im `  ( G `  x ) ) )  +  ( ( Im `  ( F `  x )
)  x.  ( Re
`  ( G `  x ) ) ) ) ) )
84 ovex 6105 . . . . . . 7  |-  ( ( Re `  ( F `
 x ) )  x.  ( Im `  ( G `  x ) ) )  e.  _V
8584a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( Re `  ( F `  x )
)  x.  ( Im
`  ( G `  x ) ) )  e.  _V )
86 ovex 6105 . . . . . . 7  |-  ( ( Im `  ( F `
 x ) )  x.  ( Re `  ( G `  x ) ) )  e.  _V
8786a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( Im `  ( F `  x )
)  x.  ( Re
`  ( G `  x ) ) )  e.  _V )
8829, 34, 40, 36, 42offval2 6325 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( Re
`  ( F `  x ) )  x.  ( Im `  ( G `  x )
) ) ) )
8929, 39, 35, 41, 37offval2 6325 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( Im
`  ( F `  x ) )  x.  ( Re `  ( G `  x )
) ) ) )
9029, 85, 87, 88, 89offval2 6325 . . . . 5  |-  ( ph  ->  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) ) )  oF  +  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( ( Re
`  ( F `  x ) )  x.  ( Im `  ( G `  x )
) )  +  ( ( Im `  ( F `  x )
)  x.  ( Re
`  ( G `  x ) ) ) ) ) )
9183, 90eqtr4d 2468 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( ( F `  x )  x.  ( G `  x )
) ) )  =  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) ) )  oF  +  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) ) ) ) )
9256, 74, 69, 78mbfmullem 21045 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )  e. MblFn
)
9373, 67, 76, 71mbfmullem 21045 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )  e. MblFn
)
9492, 93mbfadd 20981 . . . 4  |-  ( ph  ->  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) ) )  oF  +  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) ) ) )  e. MblFn )
9591, 94eqeltrd 2507 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( ( F `  x )  x.  ( G `  x )
) ) )  e. MblFn
)
9622, 25mulcld 9394 . . . 4  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( F `  x
)  x.  ( G `
 x ) )  e.  CC )
9796ismbfcn2 20959 . . 3  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x )  x.  ( G `  x ) ) )  e. MblFn 
<->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( ( F `
 x )  x.  ( G `  x
) ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( ( F `
 x )  x.  ( G `  x
) ) ) )  e. MblFn ) ) )
9881, 95, 97mpbir2and 906 . 2  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  x.  ( G `  x
) ) )  e. MblFn
)
9918, 98eqeltrd 2507 1  |-  ( ph  ->  ( F  oF  x.  G )  e. MblFn
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   _Vcvv 2962    i^i cin 3315    C_ wss 3316    e. cmpt 4338   dom cdm 4827    |` cres 4829    Fn wfn 5401   -->wf 5402   ` cfv 5406  (class class class)co 6080    oFcof 6307   CCcc 9268   RRcr 9269    + caddc 9273    x. cmul 9275    - cmin 9583   Recre 12570   Imcim 12571   volcvol 20789  MblFncmbf 20936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cc 8592  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-disj 4251  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-ofr 6310  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-omul 6913  df-er 7089  df-map 7204  df-pm 7205  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-acn 8100  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-n0 10568  df-z 10635  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-ioo 11292  df-ioc 11293  df-ico 11294  df-icc 11295  df-fz 11425  df-fzo 11533  df-fl 11626  df-seq 11791  df-exp 11850  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-limsup 12933  df-clim 12950  df-rlim 12951  df-sum 13148  df-rest 14344  df-topgen 14365  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-top 18345  df-bases 18347  df-topon 18348  df-cmp 18832  df-ovol 20790  df-vol 20791  df-mbf 20941  df-itg1 20942  df-0p 20990
This theorem is referenced by:  bddmulibl  21158
  Copyright terms: Public domain W3C validator