MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmul Structured version   Unicode version

Theorem mbfmul 21340
Description: The product of two measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1  |-  ( ph  ->  F  e. MblFn )
mbfmul.2  |-  ( ph  ->  G  e. MblFn )
Assertion
Ref Expression
mbfmul  |-  ( ph  ->  ( F  oF  x.  G )  e. MblFn
)

Proof of Theorem mbfmul
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mbfmul.1 . . . . 5  |-  ( ph  ->  F  e. MblFn )
2 mbff 21241 . . . . 5  |-  ( F  e. MblFn  ->  F : dom  F --> CC )
31, 2syl 16 . . . 4  |-  ( ph  ->  F : dom  F --> CC )
4 ffn 5670 . . . 4  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
53, 4syl 16 . . 3  |-  ( ph  ->  F  Fn  dom  F
)
6 mbfmul.2 . . . . 5  |-  ( ph  ->  G  e. MblFn )
7 mbff 21241 . . . . 5  |-  ( G  e. MblFn  ->  G : dom  G --> CC )
86, 7syl 16 . . . 4  |-  ( ph  ->  G : dom  G --> CC )
9 ffn 5670 . . . 4  |-  ( G : dom  G --> CC  ->  G  Fn  dom  G )
108, 9syl 16 . . 3  |-  ( ph  ->  G  Fn  dom  G
)
11 mbfdm 21242 . . . 4  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
121, 11syl 16 . . 3  |-  ( ph  ->  dom  F  e.  dom  vol )
13 mbfdm 21242 . . . 4  |-  ( G  e. MblFn  ->  dom  G  e.  dom  vol )
146, 13syl 16 . . 3  |-  ( ph  ->  dom  G  e.  dom  vol )
15 eqid 2454 . . 3  |-  ( dom 
F  i^i  dom  G )  =  ( dom  F  i^i  dom  G )
16 eqidd 2455 . . 3  |-  ( (
ph  /\  x  e.  dom  F )  ->  ( F `  x )  =  ( F `  x ) )
17 eqidd 2455 . . 3  |-  ( (
ph  /\  x  e.  dom  G )  ->  ( G `  x )  =  ( G `  x ) )
185, 10, 12, 14, 15, 16, 17offval 6440 . 2  |-  ( ph  ->  ( F  oF  x.  G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  x.  ( G `  x
) ) ) )
19 elin 3650 . . . . . . . . 9  |-  ( x  e.  ( dom  F  i^i  dom  G )  <->  ( x  e.  dom  F  /\  x  e.  dom  G ) )
2019simplbi 460 . . . . . . . 8  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  F )
21 ffvelrn 5953 . . . . . . . 8  |-  ( ( F : dom  F --> CC  /\  x  e.  dom  F )  ->  ( F `  x )  e.  CC )
223, 20, 21syl2an 477 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  ( F `  x )  e.  CC )
2319simprbi 464 . . . . . . . 8  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  G )
24 ffvelrn 5953 . . . . . . . 8  |-  ( ( G : dom  G --> CC  /\  x  e.  dom  G )  ->  ( G `  x )  e.  CC )
258, 23, 24syl2an 477 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  ( G `  x )  e.  CC )
2622, 25remuld 12828 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Re `  ( ( F `  x )  x.  ( G `  x
) ) )  =  ( ( ( Re
`  ( F `  x ) )  x.  ( Re `  ( G `  x )
) )  -  (
( Im `  ( F `  x )
)  x.  ( Im
`  ( G `  x ) ) ) ) )
2726mpteq2dva 4489 . . . . 5  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( ( F `  x )  x.  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( ( Re `  ( F `
 x ) )  x.  ( Re `  ( G `  x ) ) )  -  (
( Im `  ( F `  x )
)  x.  ( Im
`  ( G `  x ) ) ) ) ) )
28 inmbl 21159 . . . . . . 7  |-  ( ( dom  F  e.  dom  vol 
/\  dom  G  e.  dom  vol )  ->  ( dom  F  i^i  dom  G
)  e.  dom  vol )
2912, 14, 28syl2anc 661 . . . . . 6  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  e.  dom  vol )
30 ovex 6228 . . . . . . 7  |-  ( ( Re `  ( F `
 x ) )  x.  ( Re `  ( G `  x ) ) )  e.  _V
3130a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( Re `  ( F `  x )
)  x.  ( Re
`  ( G `  x ) ) )  e.  _V )
32 ovex 6228 . . . . . . 7  |-  ( ( Im `  ( F `
 x ) )  x.  ( Im `  ( G `  x ) ) )  e.  _V
3332a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( Im `  ( F `  x )
)  x.  ( Im
`  ( G `  x ) ) )  e.  _V )
3422recld 12804 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Re `  ( F `  x ) )  e.  RR )
3525recld 12804 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Re `  ( G `  x ) )  e.  RR )
36 eqidd 2455 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( F `  x )
) ) )
37 eqidd 2455 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )
3829, 34, 35, 36, 37offval2 6449 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( Re
`  ( F `  x ) )  x.  ( Re `  ( G `  x )
) ) ) )
3922imcld 12805 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Im `  ( F `  x ) )  e.  RR )
4025imcld 12805 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Im `  ( G `  x ) )  e.  RR )
41 eqidd 2455 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) ) )
42 eqidd 2455 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )
4329, 39, 40, 41, 42offval2 6449 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( Im
`  ( F `  x ) )  x.  ( Im `  ( G `  x )
) ) ) )
4429, 31, 33, 38, 43offval2 6449 . . . . 5  |-  ( ph  ->  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) ) )  oF  -  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( ( Re
`  ( F `  x ) )  x.  ( Re `  ( G `  x )
) )  -  (
( Im `  ( F `  x )
)  x.  ( Im
`  ( G `  x ) ) ) ) ) )
4527, 44eqtr4d 2498 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( ( F `  x )  x.  ( G `  x )
) ) )  =  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) ) )  oF  -  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) ) ) ) )
46 inss1 3681 . . . . . . . . . 10  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  F
47 resmpt 5267 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  C_  dom  F  -> 
( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) ) )
4846, 47ax-mp 5 . . . . . . . . 9  |-  ( ( x  e.  dom  F  |->  ( F `  x
) )  |`  ( dom  F  i^i  dom  G
) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( F `  x
) )
493feqmptd 5856 . . . . . . . . . . 11  |-  ( ph  ->  F  =  ( x  e.  dom  F  |->  ( F `  x ) ) )
5049, 1eqeltrrd 2543 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  F 
|->  ( F `  x
) )  e. MblFn )
51 mbfres 21258 . . . . . . . . . 10  |-  ( ( ( x  e.  dom  F 
|->  ( F `  x
) )  e. MblFn  /\  ( dom  F  i^i  dom  G
)  e.  dom  vol )  ->  ( ( x  e.  dom  F  |->  ( F `  x ) )  |`  ( dom  F  i^i  dom  G )
)  e. MblFn )
5250, 29, 51syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  e. MblFn
)
5348, 52syl5eqelr 2547 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) )  e. MblFn
)
5422ismbfcn2 21253 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( F `
 x ) )  e. MblFn 
<->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  e. MblFn ) ) )
5553, 54mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  e. MblFn ) )
5655simpld 459 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `  x ) ) )  e. MblFn )
57 inss2 3682 . . . . . . . . . 10  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  G
58 resmpt 5267 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  C_  dom  G  -> 
( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) ) )
5957, 58ax-mp 5 . . . . . . . . 9  |-  ( ( x  e.  dom  G  |->  ( G `  x
) )  |`  ( dom  F  i^i  dom  G
) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( G `  x
) )
608feqmptd 5856 . . . . . . . . . . 11  |-  ( ph  ->  G  =  ( x  e.  dom  G  |->  ( G `  x ) ) )
6160, 6eqeltrrd 2543 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  G 
|->  ( G `  x
) )  e. MblFn )
62 mbfres 21258 . . . . . . . . . 10  |-  ( ( ( x  e.  dom  G 
|->  ( G `  x
) )  e. MblFn  /\  ( dom  F  i^i  dom  G
)  e.  dom  vol )  ->  ( ( x  e.  dom  G  |->  ( G `  x ) )  |`  ( dom  F  i^i  dom  G )
)  e. MblFn )
6361, 29, 62syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  e. MblFn
)
6459, 63syl5eqelr 2547 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) )  e. MblFn
)
6525ismbfcn2 21253 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( G `
 x ) )  e. MblFn 
<->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) )  e. MblFn ) ) )
6664, 65mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) )  e. MblFn ) )
6766simpld 459 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) )  e. MblFn )
68 eqid 2454 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )
6934, 68fmptd 5979 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `  x ) ) ) : ( dom  F  i^i  dom  G ) --> RR )
70 eqid 2454 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `
 x ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `
 x ) ) )
7135, 70fmptd 5979 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) ) : ( dom  F  i^i  dom  G ) --> RR )
7256, 67, 69, 71mbfmullem 21339 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )  e. MblFn
)
7355simprd 463 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `  x ) ) )  e. MblFn )
7466simprd 463 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) )  e. MblFn )
75 eqid 2454 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `
 x ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `
 x ) ) )
7639, 75fmptd 5979 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `  x ) ) ) : ( dom  F  i^i  dom  G ) --> RR )
77 eqid 2454 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `
 x ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `
 x ) ) )
7840, 77fmptd 5979 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) ) : ( dom  F  i^i  dom  G ) --> RR )
7973, 74, 76, 78mbfmullem 21339 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )  e. MblFn
)
8072, 79mbfsub 21276 . . . 4  |-  ( ph  ->  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) ) )  oF  -  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) ) ) )  e. MblFn )
8145, 80eqeltrd 2542 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( ( F `  x )  x.  ( G `  x )
) ) )  e. MblFn
)
8222, 25immuld 12829 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Im `  ( ( F `  x )  x.  ( G `  x
) ) )  =  ( ( ( Re
`  ( F `  x ) )  x.  ( Im `  ( G `  x )
) )  +  ( ( Im `  ( F `  x )
)  x.  ( Re
`  ( G `  x ) ) ) ) )
8382mpteq2dva 4489 . . . . 5  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( ( F `  x )  x.  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( ( Re `  ( F `
 x ) )  x.  ( Im `  ( G `  x ) ) )  +  ( ( Im `  ( F `  x )
)  x.  ( Re
`  ( G `  x ) ) ) ) ) )
84 ovex 6228 . . . . . . 7  |-  ( ( Re `  ( F `
 x ) )  x.  ( Im `  ( G `  x ) ) )  e.  _V
8584a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( Re `  ( F `  x )
)  x.  ( Im
`  ( G `  x ) ) )  e.  _V )
86 ovex 6228 . . . . . . 7  |-  ( ( Im `  ( F `
 x ) )  x.  ( Re `  ( G `  x ) ) )  e.  _V
8786a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( Im `  ( F `  x )
)  x.  ( Re
`  ( G `  x ) ) )  e.  _V )
8829, 34, 40, 36, 42offval2 6449 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( Re
`  ( F `  x ) )  x.  ( Im `  ( G `  x )
) ) ) )
8929, 39, 35, 41, 37offval2 6449 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( Im
`  ( F `  x ) )  x.  ( Re `  ( G `  x )
) ) ) )
9029, 85, 87, 88, 89offval2 6449 . . . . 5  |-  ( ph  ->  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) ) )  oF  +  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( ( Re
`  ( F `  x ) )  x.  ( Im `  ( G `  x )
) )  +  ( ( Im `  ( F `  x )
)  x.  ( Re
`  ( G `  x ) ) ) ) ) )
9183, 90eqtr4d 2498 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( ( F `  x )  x.  ( G `  x )
) ) )  =  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) ) )  oF  +  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) ) ) ) )
9256, 74, 69, 78mbfmullem 21339 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )  e. MblFn
)
9373, 67, 76, 71mbfmullem 21339 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )  e. MblFn
)
9492, 93mbfadd 21275 . . . 4  |-  ( ph  ->  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) ) )  oF  +  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) ) ) )  e. MblFn )
9591, 94eqeltrd 2542 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( ( F `  x )  x.  ( G `  x )
) ) )  e. MblFn
)
9622, 25mulcld 9520 . . . 4  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( F `  x
)  x.  ( G `
 x ) )  e.  CC )
9796ismbfcn2 21253 . . 3  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x )  x.  ( G `  x ) ) )  e. MblFn 
<->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( ( F `
 x )  x.  ( G `  x
) ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( ( F `
 x )  x.  ( G `  x
) ) ) )  e. MblFn ) ) )
9881, 95, 97mpbir2and 913 . 2  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  x.  ( G `  x
) ) )  e. MblFn
)
9918, 98eqeltrd 2542 1  |-  ( ph  ->  ( F  oF  x.  G )  e. MblFn
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3078    i^i cin 3438    C_ wss 3439    |-> cmpt 4461   dom cdm 4951    |` cres 4953    Fn wfn 5524   -->wf 5525   ` cfv 5529  (class class class)co 6203    oFcof 6431   CCcc 9394   RRcr 9395    + caddc 9399    x. cmul 9401    - cmin 9709   Recre 12707   Imcim 12708   volcvol 21082  MblFncmbf 21230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7961  ax-cc 8718  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-disj 4374  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-of 6433  df-ofr 6434  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-2o 7034  df-oadd 7037  df-omul 7038  df-er 7214  df-map 7329  df-pm 7330  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-fi 7775  df-sup 7805  df-oi 7838  df-card 8223  df-acn 8226  df-cda 8451  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108  df-nn 10437  df-2 10494  df-3 10495  df-n0 10694  df-z 10761  df-uz 10976  df-q 11068  df-rp 11106  df-xneg 11203  df-xadd 11204  df-xmul 11205  df-ioo 11418  df-ioc 11419  df-ico 11420  df-icc 11421  df-fz 11558  df-fzo 11669  df-fl 11762  df-seq 11927  df-exp 11986  df-hash 12224  df-cj 12709  df-re 12710  df-im 12711  df-sqr 12845  df-abs 12846  df-limsup 13070  df-clim 13087  df-rlim 13088  df-sum 13285  df-rest 14483  df-topgen 14504  df-psmet 17937  df-xmet 17938  df-met 17939  df-bl 17940  df-mopn 17941  df-top 18638  df-bases 18640  df-topon 18641  df-cmp 19125  df-ovol 21083  df-vol 21084  df-mbf 21235  df-itg1 21236  df-0p 21284
This theorem is referenced by:  bddmulibl  21452
  Copyright terms: Public domain W3C validator