MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmul Structured version   Unicode version

Theorem mbfmul 21179
Description: The product of two measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1  |-  ( ph  ->  F  e. MblFn )
mbfmul.2  |-  ( ph  ->  G  e. MblFn )
Assertion
Ref Expression
mbfmul  |-  ( ph  ->  ( F  oF  x.  G )  e. MblFn
)

Proof of Theorem mbfmul
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mbfmul.1 . . . . 5  |-  ( ph  ->  F  e. MblFn )
2 mbff 21080 . . . . 5  |-  ( F  e. MblFn  ->  F : dom  F --> CC )
31, 2syl 16 . . . 4  |-  ( ph  ->  F : dom  F --> CC )
4 ffn 5554 . . . 4  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
53, 4syl 16 . . 3  |-  ( ph  ->  F  Fn  dom  F
)
6 mbfmul.2 . . . . 5  |-  ( ph  ->  G  e. MblFn )
7 mbff 21080 . . . . 5  |-  ( G  e. MblFn  ->  G : dom  G --> CC )
86, 7syl 16 . . . 4  |-  ( ph  ->  G : dom  G --> CC )
9 ffn 5554 . . . 4  |-  ( G : dom  G --> CC  ->  G  Fn  dom  G )
108, 9syl 16 . . 3  |-  ( ph  ->  G  Fn  dom  G
)
11 mbfdm 21081 . . . 4  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
121, 11syl 16 . . 3  |-  ( ph  ->  dom  F  e.  dom  vol )
13 mbfdm 21081 . . . 4  |-  ( G  e. MblFn  ->  dom  G  e.  dom  vol )
146, 13syl 16 . . 3  |-  ( ph  ->  dom  G  e.  dom  vol )
15 eqid 2438 . . 3  |-  ( dom 
F  i^i  dom  G )  =  ( dom  F  i^i  dom  G )
16 eqidd 2439 . . 3  |-  ( (
ph  /\  x  e.  dom  F )  ->  ( F `  x )  =  ( F `  x ) )
17 eqidd 2439 . . 3  |-  ( (
ph  /\  x  e.  dom  G )  ->  ( G `  x )  =  ( G `  x ) )
185, 10, 12, 14, 15, 16, 17offval 6322 . 2  |-  ( ph  ->  ( F  oF  x.  G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  x.  ( G `  x
) ) ) )
19 elin 3534 . . . . . . . . 9  |-  ( x  e.  ( dom  F  i^i  dom  G )  <->  ( x  e.  dom  F  /\  x  e.  dom  G ) )
2019simplbi 460 . . . . . . . 8  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  F )
21 ffvelrn 5836 . . . . . . . 8  |-  ( ( F : dom  F --> CC  /\  x  e.  dom  F )  ->  ( F `  x )  e.  CC )
223, 20, 21syl2an 477 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  ( F `  x )  e.  CC )
2319simprbi 464 . . . . . . . 8  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  G )
24 ffvelrn 5836 . . . . . . . 8  |-  ( ( G : dom  G --> CC  /\  x  e.  dom  G )  ->  ( G `  x )  e.  CC )
258, 23, 24syl2an 477 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  ( G `  x )  e.  CC )
2622, 25remuld 12699 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Re `  ( ( F `  x )  x.  ( G `  x
) ) )  =  ( ( ( Re
`  ( F `  x ) )  x.  ( Re `  ( G `  x )
) )  -  (
( Im `  ( F `  x )
)  x.  ( Im
`  ( G `  x ) ) ) ) )
2726mpteq2dva 4373 . . . . 5  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( ( F `  x )  x.  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( ( Re `  ( F `
 x ) )  x.  ( Re `  ( G `  x ) ) )  -  (
( Im `  ( F `  x )
)  x.  ( Im
`  ( G `  x ) ) ) ) ) )
28 inmbl 20998 . . . . . . 7  |-  ( ( dom  F  e.  dom  vol 
/\  dom  G  e.  dom  vol )  ->  ( dom  F  i^i  dom  G
)  e.  dom  vol )
2912, 14, 28syl2anc 661 . . . . . 6  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  e.  dom  vol )
30 ovex 6111 . . . . . . 7  |-  ( ( Re `  ( F `
 x ) )  x.  ( Re `  ( G `  x ) ) )  e.  _V
3130a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( Re `  ( F `  x )
)  x.  ( Re
`  ( G `  x ) ) )  e.  _V )
32 ovex 6111 . . . . . . 7  |-  ( ( Im `  ( F `
 x ) )  x.  ( Im `  ( G `  x ) ) )  e.  _V
3332a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( Im `  ( F `  x )
)  x.  ( Im
`  ( G `  x ) ) )  e.  _V )
3422recld 12675 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Re `  ( F `  x ) )  e.  RR )
3525recld 12675 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Re `  ( G `  x ) )  e.  RR )
36 eqidd 2439 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( F `  x )
) ) )
37 eqidd 2439 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )
3829, 34, 35, 36, 37offval2 6331 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( Re
`  ( F `  x ) )  x.  ( Re `  ( G `  x )
) ) ) )
3922imcld 12676 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Im `  ( F `  x ) )  e.  RR )
4025imcld 12676 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Im `  ( G `  x ) )  e.  RR )
41 eqidd 2439 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) ) )
42 eqidd 2439 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )
4329, 39, 40, 41, 42offval2 6331 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( Im
`  ( F `  x ) )  x.  ( Im `  ( G `  x )
) ) ) )
4429, 31, 33, 38, 43offval2 6331 . . . . 5  |-  ( ph  ->  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) ) )  oF  -  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( ( Re
`  ( F `  x ) )  x.  ( Re `  ( G `  x )
) )  -  (
( Im `  ( F `  x )
)  x.  ( Im
`  ( G `  x ) ) ) ) ) )
4527, 44eqtr4d 2473 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( ( F `  x )  x.  ( G `  x )
) ) )  =  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) ) )  oF  -  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) ) ) ) )
46 inss1 3565 . . . . . . . . . 10  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  F
47 resmpt 5151 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  C_  dom  F  -> 
( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) ) )
4846, 47ax-mp 5 . . . . . . . . 9  |-  ( ( x  e.  dom  F  |->  ( F `  x
) )  |`  ( dom  F  i^i  dom  G
) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( F `  x
) )
493feqmptd 5739 . . . . . . . . . . 11  |-  ( ph  ->  F  =  ( x  e.  dom  F  |->  ( F `  x ) ) )
5049, 1eqeltrrd 2513 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  F 
|->  ( F `  x
) )  e. MblFn )
51 mbfres 21097 . . . . . . . . . 10  |-  ( ( ( x  e.  dom  F 
|->  ( F `  x
) )  e. MblFn  /\  ( dom  F  i^i  dom  G
)  e.  dom  vol )  ->  ( ( x  e.  dom  F  |->  ( F `  x ) )  |`  ( dom  F  i^i  dom  G )
)  e. MblFn )
5250, 29, 51syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  e. MblFn
)
5348, 52syl5eqelr 2523 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) )  e. MblFn
)
5422ismbfcn2 21092 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( F `
 x ) )  e. MblFn 
<->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  e. MblFn ) ) )
5553, 54mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  e. MblFn ) )
5655simpld 459 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `  x ) ) )  e. MblFn )
57 inss2 3566 . . . . . . . . . 10  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  G
58 resmpt 5151 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  C_  dom  G  -> 
( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) ) )
5957, 58ax-mp 5 . . . . . . . . 9  |-  ( ( x  e.  dom  G  |->  ( G `  x
) )  |`  ( dom  F  i^i  dom  G
) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( G `  x
) )
608feqmptd 5739 . . . . . . . . . . 11  |-  ( ph  ->  G  =  ( x  e.  dom  G  |->  ( G `  x ) ) )
6160, 6eqeltrrd 2513 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  G 
|->  ( G `  x
) )  e. MblFn )
62 mbfres 21097 . . . . . . . . . 10  |-  ( ( ( x  e.  dom  G 
|->  ( G `  x
) )  e. MblFn  /\  ( dom  F  i^i  dom  G
)  e.  dom  vol )  ->  ( ( x  e.  dom  G  |->  ( G `  x ) )  |`  ( dom  F  i^i  dom  G )
)  e. MblFn )
6361, 29, 62syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  e. MblFn
)
6459, 63syl5eqelr 2523 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) )  e. MblFn
)
6525ismbfcn2 21092 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( G `
 x ) )  e. MblFn 
<->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) )  e. MblFn ) ) )
6664, 65mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) )  e. MblFn ) )
6766simpld 459 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) )  e. MblFn )
68 eqid 2438 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )
6934, 68fmptd 5862 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `  x ) ) ) : ( dom  F  i^i  dom  G ) --> RR )
70 eqid 2438 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `
 x ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `
 x ) ) )
7135, 70fmptd 5862 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) ) : ( dom  F  i^i  dom  G ) --> RR )
7256, 67, 69, 71mbfmullem 21178 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )  e. MblFn
)
7355simprd 463 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `  x ) ) )  e. MblFn )
7466simprd 463 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) )  e. MblFn )
75 eqid 2438 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `
 x ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `
 x ) ) )
7639, 75fmptd 5862 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `  x ) ) ) : ( dom  F  i^i  dom  G ) --> RR )
77 eqid 2438 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `
 x ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `
 x ) ) )
7840, 77fmptd 5862 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) ) : ( dom  F  i^i  dom  G ) --> RR )
7973, 74, 76, 78mbfmullem 21178 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )  e. MblFn
)
8072, 79mbfsub 21115 . . . 4  |-  ( ph  ->  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) ) )  oF  -  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) ) ) )  e. MblFn )
8145, 80eqeltrd 2512 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( ( F `  x )  x.  ( G `  x )
) ) )  e. MblFn
)
8222, 25immuld 12700 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Im `  ( ( F `  x )  x.  ( G `  x
) ) )  =  ( ( ( Re
`  ( F `  x ) )  x.  ( Im `  ( G `  x )
) )  +  ( ( Im `  ( F `  x )
)  x.  ( Re
`  ( G `  x ) ) ) ) )
8382mpteq2dva 4373 . . . . 5  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( ( F `  x )  x.  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( ( Re `  ( F `
 x ) )  x.  ( Im `  ( G `  x ) ) )  +  ( ( Im `  ( F `  x )
)  x.  ( Re
`  ( G `  x ) ) ) ) ) )
84 ovex 6111 . . . . . . 7  |-  ( ( Re `  ( F `
 x ) )  x.  ( Im `  ( G `  x ) ) )  e.  _V
8584a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( Re `  ( F `  x )
)  x.  ( Im
`  ( G `  x ) ) )  e.  _V )
86 ovex 6111 . . . . . . 7  |-  ( ( Im `  ( F `
 x ) )  x.  ( Re `  ( G `  x ) ) )  e.  _V
8786a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( Im `  ( F `  x )
)  x.  ( Re
`  ( G `  x ) ) )  e.  _V )
8829, 34, 40, 36, 42offval2 6331 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( Re
`  ( F `  x ) )  x.  ( Im `  ( G `  x )
) ) ) )
8929, 39, 35, 41, 37offval2 6331 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( Im
`  ( F `  x ) )  x.  ( Re `  ( G `  x )
) ) ) )
9029, 85, 87, 88, 89offval2 6331 . . . . 5  |-  ( ph  ->  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) ) )  oF  +  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( ( Re
`  ( F `  x ) )  x.  ( Im `  ( G `  x )
) )  +  ( ( Im `  ( F `  x )
)  x.  ( Re
`  ( G `  x ) ) ) ) ) )
9183, 90eqtr4d 2473 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( ( F `  x )  x.  ( G `  x )
) ) )  =  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) ) )  oF  +  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) ) ) ) )
9256, 74, 69, 78mbfmullem 21178 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )  e. MblFn
)
9373, 67, 76, 71mbfmullem 21178 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  oF  x.  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )  e. MblFn
)
9492, 93mbfadd 21114 . . . 4  |-  ( ph  ->  ( ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  oF  x.  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) ) )  oF  +  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) )  oF  x.  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) ) ) )  e. MblFn )
9591, 94eqeltrd 2512 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( ( F `  x )  x.  ( G `  x )
) ) )  e. MblFn
)
9622, 25mulcld 9398 . . . 4  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( F `  x
)  x.  ( G `
 x ) )  e.  CC )
9796ismbfcn2 21092 . . 3  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x )  x.  ( G `  x ) ) )  e. MblFn 
<->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( ( F `
 x )  x.  ( G `  x
) ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( ( F `
 x )  x.  ( G `  x
) ) ) )  e. MblFn ) ) )
9881, 95, 97mpbir2and 913 . 2  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  x.  ( G `  x
) ) )  e. MblFn
)
9918, 98eqeltrd 2512 1  |-  ( ph  ->  ( F  oF  x.  G )  e. MblFn
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2967    i^i cin 3322    C_ wss 3323    e. cmpt 4345   dom cdm 4835    |` cres 4837    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6086    oFcof 6313   CCcc 9272   RRcr 9273    + caddc 9277    x. cmul 9279    - cmin 9587   Recre 12578   Imcim 12579   volcvol 20922  MblFncmbf 21069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cc 8596  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-disj 4258  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-ofr 6316  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-omul 6917  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-acn 8104  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-rest 14353  df-topgen 14374  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-top 18478  df-bases 18480  df-topon 18481  df-cmp 18965  df-ovol 20923  df-vol 20924  df-mbf 21074  df-itg1 21075  df-0p 21123
This theorem is referenced by:  bddmulibl  21291
  Copyright terms: Public domain W3C validator