MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmptcl Structured version   Unicode version

Theorem mbfmptcl 21779
Description: Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
mbfmptcl.1  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
mbfmptcl.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
Assertion
Ref Expression
mbfmptcl  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem mbfmptcl
StepHypRef Expression
1 mbfmptcl.1 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
2 mbff 21769 . . . . 5  |-  ( ( x  e.  A  |->  B )  e. MblFn  ->  ( x  e.  A  |->  B ) : dom  ( x  e.  A  |->  B ) --> CC )
31, 2syl 16 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B ) : dom  ( x  e.  A  |->  B ) --> CC )
4 mbfmptcl.2 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
54ralrimiva 2878 . . . . . 6  |-  ( ph  ->  A. x  e.  A  B  e.  V )
6 dmmptg 5502 . . . . . 6  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
75, 6syl 16 . . . . 5  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
87feq2d 5716 . . . 4  |-  ( ph  ->  ( ( x  e.  A  |->  B ) : dom  ( x  e.  A  |->  B ) --> CC  <->  ( x  e.  A  |->  B ) : A --> CC ) )
93, 8mpbid 210 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> CC )
10 eqid 2467 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
1110fmpt 6040 . . 3  |-  ( A. x  e.  A  B  e.  CC  <->  ( x  e.  A  |->  B ) : A --> CC )
129, 11sylibr 212 . 2  |-  ( ph  ->  A. x  e.  A  B  e.  CC )
1312r19.21bi 2833 1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814    |-> cmpt 4505   dom cdm 4999   -->wf 5582   CCcc 9486  MblFncmbf 21758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-pm 7420  df-mbf 21763
This theorem is referenced by:  mbfss  21788  mbfneg  21792  mbfmulc2  21805  mbflim  21810  itgcnlem  21931  itgcnval  21941  itgre  21942  itgim  21943  iblneg  21944  itgneg  21945  iblss  21946  iblss2  21947  ibladd  21962  iblsub  21963  itgadd  21966  itgsub  21967  itgfsum  21968  iblabs  21970  iblabsr  21971  iblmulc2  21972  itgmulc2  21975  itgabs  21976  itgsplit  21977  bddmulibl  21980  itgcn  21984  ditgswap  21998  ditgsplitlem  21999  ftc1a  22173  ibladdnc  29649  itgaddnc  29652  iblsubnc  29653  itgsubnc  29654  iblabsnc  29656  iblmulc2nc  29657  itgmulc2nc  29660  itgabsnc  29661
  Copyright terms: Public domain W3C validator